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Abstract: Network centric military systems (NCW) involve hundreds to thousands of manned 

and autonomous entities cooperating to achieve complex joint objectives in incomplete 

information environments. The overall goal of this multidisciplinary research is to provide 

validated theories and models, grounded in experiments with human operators that allow 

descriptive and predictive characterization of important properties and performance of complex 

and large-scale human-machine networked systems.  The most significant results of the research 

were: (a) a scalable cognitive model framework, ACT-UP, an effective abstraction of the  ACT-R 

cognitive modeling system that provides scalability while maintaining  targeted cognitive fidelity 

to aspects relevant to the application, (b) algorithms for automated path planning of large scale 

(hundreds) robot systems, (c) understanding and predicting behavior, including potential 

vulnerabilities, of large scale heterogeneous complex networks, (d) algorithms for constrained 

multi-robot task assignment (e) models of  human performance as number of robots scale for 

independently operating robots, (f) robot self-reflection and novel queuing algorithms for 

scheduling operator attention, (g) scalable displays, (h) models of human-robot decision making, 

(i) models of  human team interaction with automation,  (j) models for planning and resource 

allocation in multi-robot teams with formal performance guarantees, and (k) human-automation 

collaborative scheduling. 

 

Summary of the Significant Work Accomplished 
 
1. Scalable Cognitive Models (Lead: CMU-Psychology) 

 
1.1 Introduction 
 
The ubiquitous and complex nature of information networks comprised of human and machine 

agents makes it essential to develop a methodology for their study that integrates the principles of 

behavioral research with the scalability of computational simulations. Therefore it is important to 

develop scalable cognitive models to allow studies in characteristics and performance of man-

machine networked systems. This is significant since the availability of a scalable, easy-to-

integrate, cognitively validated agent framework would make cognitive techniques accessible to a 

much broader range of potential users and applications. 

 

The performance of teams is vital to the function of organizations.  For instance, small and large 

teams of warfighters may be united in pursuing overall goals and trained to precisely interact with 

their environment according to defined protocols.  Yet, achieving an information advantage is 

crucial.  Do they exchange vital information expediently and reliably? How is such 

communication organized?  How are joint decisions taken?  Such questions have been 

investigated using simple if not simplistic computational games and multi-agent simulations.  

Recent advances in cognitive modeling provide a high-fidelity account of individual performance.  

Recent breakthroughs establishing the science of networks allow us to describe the structural 

properties of teams, and propose mechanisms that may lead to the creation of team structures as 
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we observe them.  The ubiquitous and complex nature of information networks makes it essential 

to develop a methodology for their study that integrates the principles of behavioral research with 

the scalability of computational simulations. Our interdisciplinary approach combining multi-

agent simulation, cognitive modeling and network science yields new insights in the function of 

teams and the emergence of communication systems. 

 

CMU Psychology has led the investigation of scalability in robust cognitive models in order to 

explain and predict team behavior and the emergence of joint communication and action.  

Through a new implementation of the ACT-R theory (Anderson 2007), called ACT-UP, we 

mitigate the tradeoff between fidelity and complexity in cognitive modeling, providing a faster, 

rapid-prototyping environment.  This has been applied in a series of cognitive models in the 

teamwork domain.  Furthermore, we have turned to empirical validation of these models 

In one application of these new methods, we conduct the first large-scale experiments with 

synchronous team interaction in a controlled environment and with a well-defined, 

algorithmically analyzable, communication-dependent task.  Prior work has investigated team 

interaction using simple games (Kearns lab, U Penn and Winter and Watts, Yahoo Research), but 

has avoided the use of communication or more complex tax dynamics.  Our team with an 

interdisciplinary background in Computer Science, Cognitive Psychology and Linguistics was 

suited to design these new simulations and experiments. 

 

1.2 Robust and efficient large-scale cognitive modeling in the ACT-UP 
framework. 
 

Work on all models in this MURI has benefited from a novel common implementation of the 

ACT-R theory (Anderson 2007).  ACT-UP is an abstraction of ACT-R designed to provide the 

following advantages: 

· speed up development time by focusing programmer efforts 

· scalability to large numbers of agents for network simulations 

· targeted cognitive fidelity only to aspects relevant to the task  

· facilitate integration with other programming/modeling frameworks 

 

ACT-UP achieves those objectives by providing a direct API to the key aspects of ACT-R 

functionality, such as memory retrieval, production matching, visual search, etc. This API 

approach allows the modeler to leverage only the aspects of the architecture relevant to a given 

application, thus speeding up development time as well.  The lightweight framework, as opposed 

to the commitment required by a monolithic architecture, provides scalability to large numbers of 

agents and easy integration with other programming or modeling languages 

ACT-UP provides an opposite solution to another approach to providing a higher-level cognitive 

language, the High-Level Behavioral Representation Language (HLSR): while HLSR attempts to 

abstract away from the key architectural components, ACT-UP exposes them directly.  But while 

HLSR still commits to running the full model within the architectural framework, ACT-UP only 

commits to running the key elements and allows the modeler to abstract the other ones for 

tractability or efficiency. 

 

Experience with the Language Evolution model (see below) shows that ACT-UP can provide 

scalability and efficiency in two ways.  Simulation Scalability: We observed a speed-up of an 

estimated 1,000% in the multi-agent simulation of language evolution compared to an earlier 

ACT-R implementation of the model, owed to the new implementation but also to the fact that 

underspecified aspects of the task model can be executed much more efficiently.   Modeling 

Scalability: a modeling effort of about two person-months in ACT-R translated, in this case study, 
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to one person-week in ACT-UP, again due to better prototyping and debugging facilities, but also 

due to under-specification and shorter turnaround-times.  

 

ACT-UP, a re-implementation of the ACT-R theory that introduces high-level, high-fidelity 
modeling, rapid prototyping, and better scalability, has been made available for the 
scientific community.  The system has been validated thoroughly by re-implementing 
known ACT-R models and verifying the results.1.3 Geo Game Experimentation on Team 
Communication 
 

David Reitter and Christian Lebiere. Accountable modeling in ACT-UP, a scalable, rapid-

prototyping ACT-R implementation. In Proceedings of the 10th International Conference 

on Cognitive Modeling (ICCM), pages 199-204, Philadelphia, PA, 2010. 

Christian Lebiere, Andrea Stocco, David Reitter, and Ion Juvina.  High-fidelity cognitive 

modeling to real-world applications. In Proceedings of the NATO Workshop on Human 

Modeling for Military Application, Amsterdam, NL, 2010. 19 pages. 

 

1.3  The Geo Game Experimental Framework 
 

We designed and implemented an experimental framework, called the Geo Game series 

of experiments that study collaboration and communication in networked human groups.  

The Geo Game is a foraging game, developed by CMU-Robotics, CMU-Psychology and   

the U Pittsburgh teams, that is designed to exercise individual cognitive abilities, 

specifically memory, perceptual and communication capacities.  As such, the task 

exercises human abilities typically required in real-life teamwork tasks, as well as team-

specific skills. 

 

In the Geo Game, participants have to locate hidden items scattered throughout a virtual 

world represented by a map.  Exploring the map is time-consuming, but they may 

communicate their findings using written messages, greatly speeding up their work.   

Individuals only communicate with a predefined subset of teammates. In the current 

series of experiments, we use small-world networks to define the communication paths, 

whose structure is representative of larger human and non-human communication and 

cooperation networks. 

 

In any such real-world task, communication and task execution are usually co-dependent, 

yet represent a tradeoff: communication takes time and attentional resources from the 

main objective. We present a cognitive model of an experimental task consisting of a 

collaborative and competitive game played by groups of human participants organized in 

a small-world graph.  

 

Through a range of possible manipulations, the Geo Game platform allows us to answer 

questions about how information propagates in networks, how it modulates the 

interaction of adversarial networks, how it is acquired and retained by networks 

(accommodating individual limitations), how communication mechanisms are developed 

and optimized by communities, and how controlling some of these parameters through 

technical means can improve task success. 
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Our initial experiments  investigate techniques to optimize collaboration.  The first 

experiments with the Geo Game concerned communication policies for individuals 

working in teams.  The  experiment involved teams (20 participants per team) of humans 

playing a cooperative game. The  effect  of local communication policies on the 

efficiency and the performance of networked participants was observed. The model 

follows the ACT-R theory and provides a formalization of the decision-making processes 

and tradeoffs involved.  

 

Specifically, we looked at the use of communication policies in networks, hypothesizing 

that judicious communications not only are more effective overall, but also more 

efficient.  The initial experiments confirmed this, and they also provided suggestive 

evidence that individuals that communicate with only a few others in the network benefit 

more from a policy of judicious, targeted communications than do the well-connected 

ones. 

 

In further experiments, we found results consistent with substantial adaptivity among 

subjects.  Some subject groups were able to perform well even under the non-targeted, 

“information overload” condition; in a control condition, we were able to obtain good 

performance also from subjects who did not communicate at all.  Post-experiment 

interviews suggested that subjects were able to memorize information that helped them 

play the game.  

  

 

 
 
Figure 1: The Geo Game screen showing the participants’ task graphical interface. In 
particular, the figure shows the map with city names, a panel in the left hand side showing 
articles that are currently in Paris (to get this the participant has to “go to” Paris),  a chat 
interface below the map,  a window that shows the item that the participant has to find 
(Towel), a panel in the left hand side showing requests and replies from various team 
members of the participant. 
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Once communication takes place, information state is maintained by individuals, but also 

non-redundantly by the network.  Much of our work related to information state 

maintenance in human individuals and human or human-machine networks.  In one of 

these studies, a multi-model simulation, two information decay methods were examined 

that help multi-agent systems cope with dynamic environments. The agents in this 

simulation have human-like memory and a mechanism to moderate their 

communications: they forget internally stored information via temporal decay, and they 

forget distributed information by filtering it as it passes through a communication 

network. The agents play a foraging game, in which performance depends on 

communicating facts and requests and on storing facts in internal memory. Parameters of 

the game and agent models are tuned to human data. Agent groups with moderated 

communication in small-world networks achieve optimal performance for typical human 

memory decay values, while non-adaptive agents benefit from stronger memory decay. 

The decay and filtering strategies interact with the properties of the network graph in 

ways suggestive of an evolutionary co-optimization between the human cognitive system 

and an external social structure. 

David Reitter and Christian Lebiere. Towards cognitive models of communication and 

group intelligence. In Proceedings of the 33rd Annual Meeting of the Cognitive 

Science Society, pages 734-739, Boston, MA, July 2011.  

David Reitter, Katia Sycara, Christian Lebiere, Yury Vinokurov, Antonio Juarez, and 

Michael Lewis. How teams benefit from communication policies: information 

flow in human peer-to-peer networks. In Proceedings of the 20th Behavior 

Representation in Modeling & Simulation (BRIMS), 2011. 

 
1.4.Cognitive models of distributed network interaction 
 

Using the ACT-UP cognitive modeling toolkit, we have developed cognitive models for a 

number of specific network activities, including spatial path planning and navigation in 

multi-robot control systems, language evolution, and control and decision-making.  

Finally, we developed an integrated model of these cognitive activities in the context of 

the Geo Game foraging simulation to validate their interaction in the context of a 

complex task. 

 
1.4.1. Spatial path planning in mazes, multi-robot control systems, and general 
navigation tasks 

 

Planning a path to a destination, given a number of options and obstacles, is a common 

task.  We developed a two-component cognitive model that combines retrieval of 

knowledge about the environment with search guided by visual perception. In the first 

component, subsymbolic information, acquired during navigation, aids in the retrieval of 

declarative information representing possible paths to take. In the second component, 

visual information directs the search, which in turn creates knowledge for the first 

component. The model is implemented using the ACT-UP cognitive toolkit and makes 
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realistic assumptions about memory access and shifts in visual attention. We derived 

simulation results for memory-based high-level navigation in grid and tree structures, and 

visual navigation in mazes, varying relevant cognitive (retrieval noise, visual finsts) and 

environmental (maze and path size) parameters. 

 

We applied and evaluated the model in an experiment involving visual path planning for 

multiple, remote robots in a partially visible building, with a partial 2D map available.  

Participants in the experiment defined waypoints for each robot to circumnavigate 

obstacles and explore the building.  Our visual planning model is evaluated using the 

experimental data with a normalized metric of the fit between model and subject 

itineraries.  Through model fit we observe individual differences in strategies to cope 

with task demands. 
 

David Reitter and Christian Lebiere.  A subsymbolic and visual model of spatial path planning. 

In: Proc. Behavior Representation in Modeling and Simulation (BRIMS), 2009. Best 

paper award BRIMS 2009. 

David Reitter, Christian Lebiere, Michael Lewis, Huadong Wang, and Zheng Ma.  A cognitive 

model of visual path planning in a multi-robot control system.  In: Proceedings Systems 

Man Cybernetics 2009 (IEEE-SMC), San Antonio, TX, 2009. 

David Reitter and Christian Lebiere. A cognitive model of spatial path planning. Computational 

and Mathematical Organization Theory, 16(3):220-245, 2010. 

 

1.4.2. Towards explaining the evolution of domain languages with cognitive 
simulation 
 

We simulated the evolution of a domain language in small speaker communities. Data 

from published experiments show that human communicators can evolve graphical 

languages quickly in a constrained task (Pictionary), and that communities converge 

towards a common language even in the absence of feedback about the success of each 

communication. We postulated that simulations of such horizontal evolution have to take 

into account properties of human memory (cue-based retrieval, learning, decay). We 

implemented a model that can draw abstract concepts through sets of non-abstract, 

related concepts, and recognize such drawings. The knowledge base is a network with 

association strengths randomly sampled from a natural distribution found in a text corpus; 

it is a mixture of knowledge shared between agents and individual knowledge. In three 

experiments, we showed that the agent communities converge, but that initial 

convergence is stronger when communities are structured so that the same pairs of agents 

interact throughout. Convergence is weaker in communities when agents do not swap 

roles (between recognizing and drawing), predicting the necessity of bi-directional 

communication in domain language evolution. Average and ultimate recognition 

performance depends on how much of the knowledge agents share initially. 

 

Originally, we developed this model according to previously available data for small (8-

person) communities.  In following years, this model has been integrated in a network-

based simulation with up to 1,000 cognitive models, which interact to develop a common 

vocabulary.  Contrasting a range of networks that differed by their structural form, we 

found striking differences between organizational hierarchies (trees) and naturally 

occurring small world networks.  While trees performed the task best due to excellent 



7 

 

local convergence, they greatly suffered when the network was reconfigured.  In other 

words, they did not show global convergence, and such teams failed to develop a 

common language.  Instead, they developed many “local” languages.  Small worlds 

performed well in the task and maintained their performance across configurational 

changes.  Thus, small world networks represent a more robust form of organization with 

respect to tasks that depend on the exchange of information via language. 

 

We developed a cognitive model of an experimental task consisting of a collaborative 

and competitive game played by groups of human participants organized in a small-world 

graph. In an experiment involving teams of humans playing a cooperative game, the 

effect of local communication policies on the efficiency and the performance of 

networked participants was observed. A simulation of the hypothetical case of unnatural 

memory decay shows decreased performance and supports a prediction of the thesis that 

memory limitations have co-evolved with social structure. In a more advanced line of 

work, we cast decay in individual memory to explain a complex pattern of linguistic 

adaptation effects that explain how small or large teams of people effortlessly align their 

languages.  The psycholinguistic literature has identified two such syntactic adaptation 

effects in language production: rapidly decaying short-term priming and long-lasting 

adaptation. To explain both effects, we developed a model of syntactic priming that 

applies a wide-coverage linguistic theory that explains priming as a standard memory 

effect. In this model, two well-established mechanisms, base-level learning and spreading 

activation, account for long-term adaptation and short-term priming, respectively. Our 

model simulates incremental language production and in a series of modeling studies we 

show that it accounts for a pattern of empirically documented results.  An understanding 

of the cognitive mechanisms of adaptation in language use are relevant for the 

development of human-computer interfaces, for communication protocols within teams 

of humans and mixed human-machine teams. 

 
David Reitter and Christian Lebiere.  Towards explaining the evolution of domain languages with 

cognitive simulation.   In: Proceedings of the 9th International Conference on Cognitive 

Modeling (ICCM), Manchester, UK, 2009.  

David Reitter and Christian Lebiere. Did social networks shape language evolution? A multi-

agent cognitive simulation. In Proc. Cognitive Modeling and Computational Linguistics 

Workshop (CMCL), pages 9-17, Uppsala, Sweden, 2010. Association for Computational 

Linguistics. 

David Reitter and Christian Lebiere. On the influence of network structure on language evolution. 

In Ron Sun, editor, Proc. CogSci Workshop on Cognitive Social Sciences: Grounding the 

Social Sciences in the Cognitive Sciences, Portland, Oregon, 2010. 

David Reitter and Christian Lebiere. How groups develop a specialized domain vocabulary: A 

cognitive multi-agent model. Cognitive Systems Research, 12(2):175-185, 2011. 

David Reitter, Frank Keller, and Johanna D. Moore. A computational cognitive model of 

syntactic priming. Cognitive Science, 35(4),  p.587-637. 2011. 

David Reitter.  Lexical language evolution in networked human groups.  In Words and Networks: 

Language Use in Socio-Technical Networks (WON 2012), Chicago, IL, 2012. 
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1.4.3. A two-level, multi-strategy model of memory-based control 
 

Multi-tasking, high demand environments often require human operators to balance 

dynamic, strategic coordination tasks (including communication) with real-time control 

demands (such as driving a vehicle or flying an aircraft).  We developed a model of real-

time control that can determine the external and internal factors that affect human 

performance, such as input-response feedback delays (external) or altered memory 

performance (internal). Real-time control is a common task to humans, whose 

performance improves with experience.  Control tasks are usually similar in their general 

structure.  ).  We developed the model in the context of the Dynamic Stocks and Flows 

(DSF) cognitive modeling competition to take advantage of human data available for a 

number of conditions and test the predictiveness of the model in unseen conditions.  In 

the DSF task, human subjects iteratively control water flow out of a water tank, reacting 

to a changing, independently determined inflow to the tank.  Thus, the core task is to 

estimate the development of the inflow from discrete samples; the distribution underlying 

the inflow is a function of time or iterative steps.  Once the next inflow is estimated, 

subjects can counteract it by choosing an appropriate outflow valve setting.   (This 

corresponds to the real-world task of maintaining altitude and airspeed when piloting an 

aircraft subject to external factors.)  In the empirical data available to design the model, 

the inflow function was manipulated across four conditions, combining linear and non-

linear, decreasing and increasing inflow.  Our model attempts to bridge the specifics of 

the experiment that produced the provided data, which involved a learning process and 

arithmetic decision-making, and real-life control problems, which also involve less 

discrete, non-arithmetic strategies to react to incremental environmental changes and to 

correlations of human actions and delayed environmental effects.  Our proposed control 

model thus had two layers: a meta-cognitive level, choosing an optimal strategy to 

address the problem, and a task-specific level, which executes each strategy.  The model 

won the DSF competition by providing the best generalization to undisclosed 

experimental manipulations, such as fluctuating inputs and outputs characteristic of an 

unstable environment, and control delays reflecting the complexity of the underlying 

system. 

 

We also applied a similar modeling approach to another agent modeling competition, the 

Lemonade Game.  The Lemonade Game is a three-player game in which players have to 

pick locations on a circular board, which are as far away as possible from those chosen 

independently by other players.  Players may observe other player’s moves and infer their 

strategies.  The game was studied using a competition of cognitively motivated agents, 

which inherit properties of adaptivity and stochasticity from human memory and 

decision-making, and simplistic, yet effective, agents implementing fixed strategies.  Our 

model demonstrated that metacognition constitutes the unique attribute that allows 

sophisticated agents to adapt to unforeseen conditions, cooperators and competitors. 

 
David Reitter, Ion Juvina, Andrea Stocco, and Christian Lebiere. Resistance is futile: Winning 

lemonade market share through metacognitive reasoning in a three-agent cooperative 

game. In Proceedings of the 19th Behavior Representation in Modeling & Simulation 

(BRIMS), Charleston, SC, 2010. 
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Kevin A. Gluck, Clayton T. Stanley, Jr. L. Richard Moore, David Reitter, and Marc Halbrügge. 

Exploration for understanding in model comparisons. Journal of Artificial General 

Intelligence, 2(2):88-107, 2010. 

David Reitter. Metacognition and multiple strategies in a cognitive model of online control. 

Journal of Artificial General Intelligence, 2(2):20-37, 2010.  Winning entry of Dynamic 

Stocks and Flows cognitive modeling competition. 

Christian Lebiere and John R. Anderson.  Cognitive constraints on decision making under 

uncertainty.  Frontiers in Cognition 2 (305). 2011. 

 

1.4.4. Information foraging in the Geo Game simulation 
 

To model human performance in the Geo Game experimental framework, we have 

developed a scalable, cognitively valid agent simulation comprising ACT-UP and a 

network library that makes cognitive techniques accessible to a broader range of potential 

users and applications, and is currently seeing re-use in our own groups.  A cognitive 

simulation of the Geo Game was implemented using the ACT-UP system.  In this 

simulation, a number of instances of a cognitive model play the Geo Game; the 

simulation obtains task performance similar to that of human performance.  This 

simulation not only explains some of the results obtained experimentally, but it also 

allows us to predict the effects of further manipulations.  For instance, we used the 

simulation to decide which aspects of the game to control and keep constant across 

experimental groups and conditions, and which aspects to randomize.  This question is 

highly relevant in complex, dynamic experiments like ours.  We are unaware of previous 

work predicting the effect of randomization in multi-subject experiments with dynamic 

tasks. 

 

We hypothesize that individual cognition has co-evolved with social structure to allow 

the individual to externalize memory in a robust storage mechanism, to optimize the 

development of a common communication system (e.g., vocabulary) and ultimately to 

perform well.  Large-scale cognitive modeling allowed us to test that hypothesis.  

Concretely, simulations that manipulate architectural parameters have shown that typical 

values for memory performance that have been empirically validated in the ACT-R 

literature also result in good performance in the Geo Game model.  The key research 

issue involved is the fundamental tradeoff between the costs and benefits of information 

acquisition and processing.  The basic assumption of the development of information and 

communication infrastructure is that more information is better.  Our research approach is 

two-pronged: experimentally investigate the impact of that tradeoff on performance, and 

model the cognitive and perceptual processes by which it takes place, including 

attentional and adaptive mechanisms.  The goal is to develop an understanding that 

allows the design of systems that achieve the best possible performance given technical 

and cognitive limitations. 

 

The Geo Game provides a unique platform for experimentation of information rich tasks 

in networked situations.  ACT-UP is a modeling toolkit that allows for the lightweight, 

scalable integration of human performance models in networked simulations.  Together, 

they provide an approach to modeling and simulation that can be used to evaluate and 

design a broad range of information systems in networked settings.  In any such real-
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world task, communication and task execution are usually co-dependent, yet represent a 

tradeoff: communication takes time and attentional resources from the main objective.   

Once communication takes place, information state is maintained by individuals, but also 

non-redundantly by the network.  Much of our work related to information state 

maintenance in human individuals and human or human-machine networks.  In one of 

these studies, a multi-model simulation, two information decay methods were examined 

that help multi-agent systems cope with dynamic environments. The agents in this 

simulation have human-like memory and a mechanism to moderate their 

communications: they forget internally stored information via temporal decay, and they 

forget distributed information by filtering it as it passes through a communication 

network. The agents play a foraging game, in which performance depends on 

communicating facts and requests and on storing facts in internal memory. Parameters of 

the game and agent models are tuned to human data. Agent groups with moderated 

communication in small-world networks achieve optimal performance for typical human 

memory decay values, while non-adaptive agents benefit from stronger memory decay. 

The decay and filtering strategies interact with the properties of the network graph in 

ways suggestive of an evolutionary co-optimization between the human cognitive system 

and an external social structure. 

 
David Reitter and Christian Lebiere. Towards cognitive models of communication and group 

intelligence. In Proc. 33rd annual meeting of the Cognitive Science Society, Boston, MA, 

2011. 

David Reitter and Christian Lebiere. Social cognition: Memory decay and adaptive information 

filtering for robust information maintenance. In Twenty-Sixth AAAI Conference on 

Artificial Intelligence (AAAI-12), 2012. 

David Reitter and Paul Scerri. Social multi-agent learning with simple and cognitive agents. 

In Proceedings of CAOSS 2012: Workshop on Computational and Online Social Science, 

New York, N.Y., 2012. 

David Reitter and Paul Scerri. Smooth dynamics, good performance in cognitive-agent 

congestion problems. In Proceedings of the 35th Annual Meeting of the Cognitive 

Science Society, 2013. 

Paul Scerri and David Reitter. Cognitive instance-based learning agents in a multi-agent 

congestion game. In Workshop on Information Sharing in Large Scale Multi-Agent 

Systems, at AAMAS 2013, 2013. 

 

2. Large Scale Multi Robot Path Planning Algorithms (Lead: CMU-Robotics) 
 

In many domains, teams of hundreds of agents must coordinate together to plan on 

performing tasks in a complex environment. Naively, this could require that agents take 

in every teammate’s states, observations, and choice of actions into account when making 

decisions about their own actions. This results in a huge joint space over which it is 

computationally intractable to find solutions. In certain problems, however, searching this 

complete space may not be necessary.We have studied methods to substantially reduce 

the search space of joint planning problems for teams of agents in domains where 

individual agents often act independently, but there are certain combinations of states and 

actions where two or more agents share a non-factorable transition, reward, or 

observation functions. Previous work has exploited knowledge of this type of structure to 

reduce the search space of a centralized joint policy search. However, in our work, teams 
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are assumed to be very large, consisting of hundreds of agents, and thus additional 

techniques to reduce search complexity are needed. 

 

In order to handle such large team sizes, we exploit two particular properties of our 

domains of interest. First, although there can be a large number of interactions that are 

possible, it is often the case in these domains that the number of interactions that actually 

occur in any given solution instance is quite small. By dynamically discovering relevant 

interactions rather than trying to handle every possibility, algorithm convergence can be 

greatly improved. Second, in many domains, computational power itself is distributed 

across a team of agents. This means that within these domains, running a planner requires 

either that the algorithm is inexpensive enough to run on a single agent, or fully 

distributable. Thus, we focus on distributed approaches that have access to computational 

resources that grow linearly with team size in comparison to centralized approaches, 

making them much easier to scale to very large teams. 

 

We have addressed two planning problems in which these characteristics occur: 

multiagent path planning and Distributed POMDPs with Coordination Locales (DPCLs), 

a subproblem of the canonical Dec-POMDP. Using similar approaches of dynamically 

detecting and resolving interactions, we are able to adapt existing solution techniques to 

significantly improve scalability.  

In the former case, with agents planning simultaneous paths over a grid structure, the 

result is Distributed Prioritized Planning (DPP), a simple variant of the sequential 

Prioritized Planning. Results with DPP demonstrate that iterative planning in situations 

where interaction is sparse can produce efficient solutions in relatively little iteration with 

respect to team size. However, they also emphasize the importance of low variance in 

individual agent planning times in allowing distributed, iterative planning to be more 

effective than sequential, decoupled planning. 

The latter problem, DPCL, is addressed by the more powerful D-TREMOR algorithm, an 

extension to the centralized, iterative TREMOR algorithm. D-TREMOR significantly 

scales the TREMOR algorithm by replacing joint search and evaluation steps with fully 

distributed heuristic approximations. Performance is demonstrated in solutions of DPCLs 

with over 100 agents in a simplified rescue domain. The results show the efficacy of 

prioritization and randomization in adjusting models of teammates’ actions for the 

interactions modeled in the rescue domain, but suggests that additional work is necessary 

to further improve performance and generalize D-TREMOR to other potential types of 

agent interactions. 

  

 D-Tremor provides a   tractable model for multiagent sequential decision making 

problems. By constraining interactions between agents to have symmetric and idempotent 

effects, and specifically defining those effects for each agent, our distributed POMDP 

algorithm (called RDPCL) is easily specifiable for many agents while remaining 

computationally tractable. We implemented different instantiations of this approach and 

compared performance. The algorithm is capable of planning policies for more than 100 

agents.  The ability to represented interesting problems has been made dramatically more 

powerful and the heuristics to get good algorithm convergence have been developed.  The  
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algorithms have been tested in multiple domains and are now being transitioned to a 

HSBC program for contingency planning in complex, multi-actor environments. 

We identified dynamic sparsity as a characteristic of many  multiagent decision 

problems. Dynamic sparsity is a powerful structural property in many planning problems, 

greatly restricting the joint interactions between agents given their policies. Our DIMS 

framework exploits dynamic sparsity directly, using iterative solving to restrict necessary 

policy computation to only interactions which arise during the planning process rather 

than all the possible interactions. 

 We developed model shaping heuristics for distributed planning. In order to reach good 

solutions, we introduced priority and randomization heuristics to quickly and reasonably 

resolve interactions. We demonstrated that by adding randomization to our DIMS 

framework improves solution quality at the expense of determinism, while adding 

prioritization improves determinism at the expense of optimality. 

 In collaboration with the University of Pittsburgh, we defined two benchmark problems, 

the rescue domain and the convoy domain that mirror real world applications. These 

problems are well defined for any number of agents and contain complex agent 

interactions both negative interactions (eg collisions) and positive interactions (e.g one 

robot fulfilling preconditions for another one to act). 

P. Velagapudi, K. Sycara, and P. Scerri, Decentralized prioritized planning in large multirobot 

teams, In IROS’10, 2010. 

 P. Velagapudi, P. Varakantham, K. Sycara, and P. Scerri Distributed Model Shaping for Scaling 

to Decentralized POMDPs with Hundreds of Agents, In AAMAS’11, 2011. 

Varakantham, P., Yeoh, W., Velagapudi, P., Sycara, K., Scerri, P. “Prioritized Shaping of 

Models for Solving DEC-POMDPs” International Conference on Autonomous 

Agents and Multi-Agent Systems (AAMAS-12), Valencia, Spain, June 4-8, 2012 

Figure 2: A sample map solved by 
the DPP algorithm.  Agents start 
at each of the circles on the map, 
and must reach their matching 
star positions without colliding 
with any other agents. 

Figure 3: A sample map 
solved by the D-TREMOR 
algorithm.  Rescue and 
cleaner robots start at the 
marked locations and must 
coordinate to rescue as 
many victims as possible 
while avoiding collisions. 
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3.  Complex Networked Systems (Lead: CMU-Robotics) 
 

3.1. Emergent Information Dynamics 
 
In the near future, large heterogeneous teams of robots, agents, and people will be utilized to 

solve problems in a variety of applications including search and rescue and the military. The 

sheer size of such teams will mean that the amount of data collected by the team will be 

overwhelming for its constituents. For this reason, team members will need to share concise 

information abstractions, i.e. conclusions, to maintain shared situational awareness.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. Information cascade distribution P(c)  where c is the cascade size. 
 

The physics of communication, along with environmental constraints, will require team 

members to communicate via a point to point associates network. This will in turn lead to 

complex information dynamics and emergent phenomena, which in turn leads to 

unpredictability. Large heterogeneous teams will often be in situations where sensor data 

that is uncertain and conflicting is shared across a peer to peer network. Not every team 

members will have direct access to sensors. Thus team members will be influenced 

mostly by information of team mates with whom they communicate directly. We 

investigated the dynamics and emergent behavior of a large team sharing beliefs to reach 

conclusions about the world. We found empirically that the dynamics of information 

propagation in such belief sharing systems are characterized by information cascades of 

belief changes caused by a single additional sensor reading input to the system. The 

distribution of the size of these cascades dictates the speed and accuracy with which the 

team reaches conclusions. A key property of the system is that it exhibits qualitatively 
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different dynamics and system performance over small range of changes in the 

parameters of the system. In one particular range the system exhibits behavior known as 

scale invariant dynamics which we empirically find to correspond to dramatically more 

accurate conclusions being reached by the overall system. Due to the fact that the ranges 

are very sensitive to system configuration details, the parameter ranges over which 

specific system dynamics occur are extremely difficult to predict precisely. We have 

developed (a) techniques to mathematically characterize the dynamics of the team belief 

propagation, (b) obtain the relation between they dynamics and overall system 

performance  and (c) developed a novel distributed algorithm that the agents in the team 

use locally to steer the whole system to areas of optimized performance. In particular, the  

 

 
 
Figure 5: the x axis denotes “trust” in a neighbor (conditional probability of believing a 
neighbor) and the y-axis denotes reliability of agents’ conclusions. We see that at cp=0.67 
there is a dramatic performance peak. 
 

 

 
 
 
Figure 6. By using the Theory of Branching processes, we developed an algorithm, DACOR that 
each agent uses locally to adaptively change the network dynamics to maintain high 
performance quality. 
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agents make local adjustments to conditional probabilities on neighbors observations that 

move the ream towards the parameter ranges where scale invariant dynamics occur for 

any network type, thus dramatically improving system performance. This algorithm also 

minimizes disruption to the overall network making it practically applicable in real world 

systems.  Our study shows that small amounts of anomalous information introduced to 

such a belief sharing system can cause errors on a system-wide scale due to the intrinsic 

dynamics of the system. This could potentially be exploited by a malicious agent 

attempting to disrupt such a system. Both analytical and empirical evidence is 

provided to support this assertion. Previous attempts to describe the vulnerabilities of 

complex networked system primarily focus on finding vulnerabilities in the network 

topology without consideration of the dynamics of the process taking place on the 

network. In our work, the dynamics on the network have a dramatic impact on the 

vulnerability of the system..  We showed that a team of agents could tune their local trust 

such that the frequency distribution of cascades of changes in belief followed a power 

law. When the team was tuned like this, the team’s ability to rapidly reach correct 

conclusions despite noisy data and limited communications was shown to be dramatically 

higher. However, we show that when a system is tuned like that, it also becomes 

vulnerable to malicious attacks. 

 
Glinton, R., Paruchuri, P., Scerri, P. Sycara, K “Self-organized criticality of belief propagation in 

large heterogeneous teams”, Hirsch, M Pardalos, P. and Murphy R (eds), Dynamics of 

Information Systems, Springer, 2009. 
Glinton, R., Sycara, K, Scerri, P. “Exploiting Scale Invariant Dynamics for Efficient Information 

propagation in Large Teams”, Proceedings of the 2010 Conference on Autonomous 

Agents and Multi-Agent Systems, Toronto, CA, May, 2010 (Second Place for Best 

Paper Award). 

Glinton, R., Scerri, P., Sycara, K. “An Explanation for the Efficiency of Scale Invariant 

Dynamics of Information Fusion in Large Teams”, International conference on 

Information Fusion (Fusion2010), July 26-29, Edinburgh, UK, 2010. 

 

3.2. Vulnerabilities in Complex Networked Systems 

 
We conducted an analysis to show that for a system exhibiting scale invariant dynamics, 

a single anomalous sensor reading could result in a number of agents on the order of the 

size of the system coming to the incorrect conclusion. The analysis compares the rate at 

which the probability that an agent is on the edge of coming to a correct conclusion, 

called the percolation probability, increases relative to the same probability for an 

incorrect conclusion. The analysis reveals that these two numbers remain close until the 

agents in the system converge. Although this difference is biased towards correct 

conclusions, the analysis shows that this difference is small enough for a few anomalous 

sensor readings to push large numbers of agents towards incorrect conclusions. To 

confirm the predictions of the analysis we empirically explored the effect of injecting a 

single incorrect sensor reading into the system on the correctness of conclusions reached 

by agents in the system. We showed empirically by exhaustively searching trajectories of 

system execution that there is always a point in that trajectory where injecting a single 

sensor reading can lead to system wide incorrect conclusions. We further show that an 
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adversary could mount an effective attack on the system if the adversary had global 

knowledge of the distance of the system from the percolation threshold for the incorrect 

conclusion. 

 

Just as complex systems can be attacked from external sources, it is also possible for 

attacks to originate from within. Thus it is necessary to understand the potential 

vulnerabilities of such a system to threats from within. To this end we studied the 

vulnerability of the agents within the system to reaching incorrect conclusions as a 

result of the action of Byzantine agents within the system. Specifically, we studied 

mechanisms for picking the most vulnerable points in the network for attack by 

Byzantine agents. We explored several different mechanisms for selecting which nodes 

are Byzantine, using methods typically employed in the study of the vulnerabilities 

in network topologies to network disintegration. The study reveals that the most effective 

method is that which selects the nodes with the maximum number of neighbors. Finally, 

our study shows that as the number of Byzantine agents in the network increases, the 

trust range between agents that results in a scale invariant distribution of cascades is no 

longer optimal. As the number of Byzantine agents increases the optimal value of trust is 

lowered slightly with the agents becoming slightly more conservative to account for the 

misinformation circulating in the system. 

 

In a large distributed system it is unlikely that an adversary would have access to the 

global network state or topology, thus it is desirable to study whether an effective attack 

on the system could be launched using only local knowledge of the network state and 

topology. To investigate the feasibility of a practical attack we developed a local 

algorithm, where Byzantine agents use knowledge of the local connectivity and a local 

estimate of the percolation threshold to decide when and where to focus an attack. We 

found that such an attack is as effective, in reducing the number of agents that come to a 

correct conclusion, as an attack mounted with full knowledge of the system state and 

network topology.  
 

Glinton, R., Scerri, P., Sycara K., An Investigation of the Vulnerabilities of Scale Invariant 

Dynamics in Large Teams Proceedings of the 2011 Conference on Autonomous Agents 

and Multi-Agent Systems, May 2-6, Taipei, Taiwan, 2011. 

 

 

3.3. Multi-agent learning in large scale networked heterogeneous systems  
 
Building on previous work that showed the utility of scale invariant dynamics at reaching 

consensus, a multi-agent learning algorithm was developed with the same inspiration.  By 

carefully modulating the rate at which agents communicate, the overall learning rate 

could be substantially improved, despite the non-stationary learning environment created 

by the simultaneous learning.  In another strand of this work, our previous information 

sharing algorithms were extended to handle situations where the agents slowly changed 

from broadcast to peer-to-peer communication as they moved around the environment 

and needed to adjust their communication algorithms for best overall performance. 
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P. Scerri, "Modulating Communication to Improve Multi-Agent Learning Convergence", In 

OPTMAS'12 Workshop at AAMAS-12.  

 

3.4 Non-Zero Sum Multiagent Network Security Games  
 
Moving assets through a transportation network is a crucial challenge in hostile 

environments such as future battlefields where malicious adversaries have strong 

incentives to attack vulnerable patrols and supply convoys. Intelligent agents must 

balance network costs with the harm that can be inflicted by adversaries who are in turn 

acting rationally to maximize harm while trading off against their own costs to attack. 

Furthermore, agents must choose their strategies even without full knowledge of their 

adversaries’ capabilities, costs, or incentives. We modelled this problem as a non-zero 

sum game between two players, a sender who chooses flows through the network and an 

adversary who chooses attacks on the network. We advance the state of the art by: (1) 

moving beyond the zero-sum games previously considered to non-zero sum games where 

the adversary incurs attack costs that are not incorporated into the payoff of the sender; 

(2) introducing a refinement of the Stackelberg equilibrium that is more appropriate to 

network security games than previous solution concepts; and (3) using Bayesian games 

where the sender is uncertain of the capabilities, payoffs, and costs of the adversary. We 

provide polynomial time algorithms for finding equilibria in each of these cases. We also 

show how our approach can be used for games where there are multiple adversaries. 
 

Okamoto, S., Hazon, N., Sycara, K. “Solving Non-Zero Sum Multiagent Network Flow Security 

Games with Attack Costs”, International Conference on Autonomous Agents and Multi-

Agent Systems (AAMAS), Valencia, Spain, June 4-8, 2012. 

Steven Okamoto_, Praveen Paruchuri, Yonghong Wang, Katia Sycara, Janusz Marecki and 

Mudhakar Srivatsa  “Multiagent Communication Security in Adversarial Settings”, 

International Conference on Intelligent Agent Technology, Lyon, France, August 22-27, 

2011. 

 

 

4. Algorithms for Multi-Robot Task Assignment with Formal Guarantees 
(Lead CMU) 
 

In many multi-robot applications like environmental monitoring, search and rescue, 

disaster response, extraterrestrial exploration, the tasks that the robots need to perform are 

not known beforehand but arise as the robots are executing their missions. In such 

scenarios, robots may be able to do more than one task during a mission depending on 

their capabilities and battery life. Since battery life for a robot is limited there will be an 

upper bound on the number of tasks that a robot can do during a mission. The problem of 

allocating tasks to robots when the tasks are not known beforehand but may arise in an 

online fashion is called the online task allocation (OTA) problem or online assignment 

problem. Depending on the characteristics of the tasks and the capability of the robots, 

different versions of the OTA problem can be formulated.  In the simplest version of 

OTA, also known as online maximum weight bipartite matching problem (MWBMP), the 

tasks arrive one at a time and each robot can do at most one task in the mission. Each 

robot-task pair has a certain payoff and the objective is to maximize the total payoff of 
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the multi-robot system. We study a generalization of the online MWBMP, where the 

tasks can arise dynamically in groups and each robot can do at most one task in each 

group, but can do more than one task in the whole mission. The abstract problem is 

motivated by two different kinds of scenarios arising in applications: (a) Tasks arise 

dynamically in groups, where each group consists of tightly-coupled tasks, i.e., tasks 

which robots must perform simultaneously, and thus each robot can only be assigned to 

one of them; (b) There exist group precedence constraints among tasks, i.e., only after the 

current group of tasks are all completed by robots, the subsequent group of tasks can get 

started, and the corresponding (payoff) information is revealed to robots. To fully explore 

the parallelism, each robot can be assigned to at most one task in each group to increase 

the efficiency. A special case, where each group has one task and each robot can do one 

task is the online maximum weighted bipartite matching problem (MWBMP). For online 

MWBMP, it is known that, under some assumptions on the payoffs, a greedy algorithm 

has a competitive ratio of 1/3. Our key result is to prove that for the general problem, 

under the same assumptions on the payoff as in MWBMP and an assumption on the 

number of tasks arising in each group, a repeated auction algorithm, where each group of 

tasks is (near) optimally allocated to the available group of robots has a guaranteed 

competitive ratio. We also prove that (a) without the assumptions on the payoffs, it is 

impossible to design an algorithm with any performance guarantee and (b) without the 

assumption on the task profile, the algorithms that can guarantee a feasible allocation (if 

one exists) have arbitrarily bad performance in the worst case. Additionally, we present 

simulation results depicting the average case performance of the repeated greedy auction 

algorithm 

 
Luo, L., Chakraborty, N. and Sycara, K.  “Distributed Algorithm Design for Multi-robot 

Generalized Task Assignment Problem”, Proceedings of International Conference on 

Intelligent Robots and Systems (IROS), Tokyo, Japan, November 3-8, 2013. 

Luo, L., Chakraborty, N., Sycara, K. Distributed Algorithm Design for Multi-Robot Task 

Assignments with Deadlines for Tasks, International Conference on Robotics and 

Automation (ICRA),  Karlsruhe, Germany,  May 6-10, 2013 
Luo, L., Chakraborty, N., Sycara, K., “Competitive Analysis of Repeated Greedy Auction 

Algorithm for Online Multi-Robot Task Assignment”,  International Conference on 

Robotics and Automation (ICRA), St. Paul, Minnesota, May 14-18, 2012. 

 

5. Scalable Human Control of Multi Robot Systems (Lead University of 
Pittsburgh in collaboration with CMU) 
 

5.1.Overview 
 

A basic problem in the development of large networked military systems is the 

integration of humans with unmanned vehicles (UVs).  As the number of UVs increases 

beyond 2 or 3, coordinating their actions becomes too complex for a human operator to 

manage.  Adding additional operators just makes things worse because now each operator 

must coordinate his UVs with every other operators’ UVs as well as his own.     If we 

allow the UVs to coordinate autonomously the problem becomes trying to find ways to 

influence their aggregate behavior so they can achieve a range of expected commanders’ 

intents. 
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Our work at the University of Pittsburgh and Carnegie Mellon University focused on the 

problem of human command over multiple UVs.  Our objective was to develop 

techniques that allow human control to scale to increasingly large numbers of UVs.  This 

problem involves both command and monitoring of UVs and effectively exploiting their 

products. 

 

We have conducted multiple  experiments  aimed at different aspects of this problem. 

Here we summarize some of the results. 

 

5.2. Control of Multiple UVs Performing Independent Tasks 
 

5.2.1. Teams of Humans Controlling Teams of Robots  
 

When human operator teams control multiple robots, the way the robots are organized 

and the methods by which robots are assigned to operators may affect system 

performance. To check this hypothesis, we completed a large 120 subject study on 

control of robot teams by teams of human operators.  The study addressed the interaction 

between automation and organization of human teams in controlling large robot teams 

performing an Urban Search and Rescue (USAR) task.  The study used the high fidelity 

USARSim testbed.  Two possible ways to organize operators were identified as 

individual assignments of robots to operators, assigned robots, or as a shared pool in 

which operators serviced robots from the population as needed.  The experiment 

compared two-member teams of operators controlling teams of 12 robots each in the 

assigned robots conditions or sharing control of 24 robots in the shared pool conditions.   

 
 
Figure 7: USARSim multi robot control system (MrCS) configured for shared control of 24 
robots 
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An additional comparison was made between manual conditions where waypoint control 

was used, and autonomy conditions where autonomous path planning was used 

.  

The experiment with teams of two operators replicates the effects of automated path 

planning found in an earlier single operator experiment (Lewis et al., 2010).  In both 

experiments, relieving operators of the need to perform path planning led to finding more 

victims and marking their locations more accurately.  In the current study participants in 

the assigned robot condition using automated path planning found twenty-two percent 

more victims.  This gain is particularly significant because the group explored 67% of the 

map and came close to matching the actual density of victims of .029/m2.  While the 

advantages for the autonomy condition are the sort often attributed to situation awareness 

(SA), process measures suggest the reverse may be true.  The times between the 

appearance of a victim in a robot’s camera and marking of the victim were much shorter 

for the autonomous conditions (assigned and shared pool). However, the time between 

selecting a robot to control and marking the victim the robot had found was much shorter 

in the manual conditions as compared to the autonomy conditions. In particular, in the 

manual condition we observed times between selecting a robot and marking its victim as 

low as 14 sec. in the shared pool group, approximately one third of the 41 seconds 

required for autonomous operators controlling assigned robots.  These data suggest that 

while operators in the autonomous path planning condition had more leisure to monitor 

the cameras leading to earlier detection, once a victim was detected, they had poorer SA 

for locating the robot and victim on the map. 

  

While team organization was a focus of this study these results were equivocal. Shared 

pool participants across conditions found fewer victims with those controlling manually 

exploring less territory as well. We had hypothesized that increasing automation would 

improve shared pool performance to a greater extent than it improved assigned robot 

performance.  This was not seen on any of the measures although the sharp drop off in 

region explored for manual control participants in the shared pool condition provided 

weak evidence for a shared pool advantage with automation. In the assigned robot 

condition operators on average neglected 2 of their 12 robots, the same number found in 

(Lewis, et al., 2010).  In the shared pool condition where robots were not assigned, fewer 

(8) robots were controlled on average.  We attribute this decrement and related effects on 

team performance to diffusion of responsibility resulting in robots left unattended. 

 

An unexpected finding of this experiment was that data from the autonomous conditions 

did not fit the Neglect Tolerance model well.  While the Neglect Tolerance model 

presumes that human interaction is needed to restore a robot’s effectiveness, most 

interactions in the autonomous version of our task were driven by the detection of a 

victim rather than degradation of robot performance.  We examined the contribution of 

operators to the system’s performance by comparing purely autonomous trials with 

mixed-initiative ones with operators on hand to provide assistance and found no 

difference in the regions explored. This leads to new research to refine the Neglect 

Tolerance model, more precisely define notions of performance in various tasks and 

construct revised and more realistic theoretical and empirical models. 
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Lewis, M., Wang, H., Chien, S., Velagapudi, P., Scerri, P. & Sycara, K. (2010). Choosing 

autonomy modes for multirobot search, Human Factors, 52(2), 225-233. 

Lewis, M., Wang, H., Chien, S., Ma, Z., Velagapudi, P., Scerri, P., & Sycara, K. (2011) 

Process and performance in human-robot teams, Journal of Cognitive 

Engineering and Decision Making, 5(2),186-208. 

Lewis, M. & Sycara (2011), Effects of automation on situation awareness in controlling 

robot teams, The Fourth International Conference on Advances in Computer-

Human Interactions, 242-248. 

Lee, P., Wang, H., Chien, S., Lewis, M., Scerri, P., Velagapudi, P., Sycara, K. & Kane, 

B. (2010). Teams for Teams: Performance in Multi-Human/Multi-Robot Teams. 

Proceedings of the 54th Annual Meeting Human Factors and Ergonomics Society 

(HFES’10), 438-442. 

Wang, H., Lewis, M., Chien, S., Scerri, P., Velagapudi, P., Sycara, K. & Kane, B. (2010). 

Teams organization and performance in multi-human/multi-robot teams, 2010 

IEEE International Conference on Systems, Man, and Cybernetics, (SMC’10), 

1617-1623.  

 

 
5.2.2. Scheduling Human Attention 
 

One case in multi UV control is when UVs perform independent tasks.  Under these 

conditions operators can control UVs in sequence in a round robin fashion.  Control of 

this type resembles a queuing system in which the operator is the server and UV needs 

for interaction correspond to the jobs.  If the operator attention which is shifted from UV 

to UV can be more effectively scheduled using Operations Research   techniques then 

system performance could be improved.  There are two prerequisites for this approach: 1) 

demonstrating that human attention can be effectively scheduled and 2) developing 

formal scheduling models offering improvement for multi UV control (see section 4).  

 

We have conducted an experiment investigating the effectiveness of directed attention 

and open alarming for improving operator response to UV failures in a multi UV system.  

This work is reported in: 
 

Chien, S., Mehrotra, S., Brooks, N., Sycara, K., & Lewis, M. (2011) Effects of Alarms on 

Control of Robot Teams, Proceedings of the 55th Annual Meeting Human Factors 

and Ergonomics Society (HFES’11). 

 

Motivated by these results we conducted a series of experiments to see how our test 

environments could be made more failure-prone in order to require more human 

intervention and how we could alert the operator to failure detected through self-

reflection. These pilots have led to the redesign of our test environment making the tasks 

more difficult by reducing lighting, adding smoke and debris.  We have also equipped our 

simulator with the capability of injecting failures so arrival rates for tasks demanding 

operator attention can be controlled allowing us to more closely match queuing models 

and test approaches to operator aiding  An experimental study found advantages for 

alerting operators to failures but not for directing them in a sequence for addressing the 

failures.  In a follow-on experiment we found that where there were substantial 
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advantages to a particular sequence of interactions (shortest job first, SJF, discipline) 

performance could be improved by directing operators to this sequence. 

 

Chien, S., Mehrotra, S., Brooks, N., Lewis, M. & Sycara, K. (2012). Scheduling Operator 

Attention for Multi-Robot Control. Proceedings of the 2012 IEEE/RSJ 

International Conference on Intelligent Robots and Systems (IROS 2012). 

 
5.2.3. Human Operator Utilization 

 

Operator utilization refers to the proportion of time an operator is performing a task.  

Studies have shown that over a wide range of settings performance deteriorates at 

utilizations above 75%.  We have developed a synthetic air traffic control task that allows 

us to control operator utilization precisely and to score each action for latency and 

correctness while controlling for difficulty.  We run an experiment comparing 

aggregations of work-rest intervals of varying lengths.  Results were reported in: 

 

Lee, P., Kolling, A., & Lewis, M. Workload Modeling using Time Windows and 

Utilization in an Air Traffic Control Task, Proceedings of the 55th Annual 

Meeting Human Factors and Ergonomics Society (HFES’11). 

Lee, P., Kolling, A. and Lewis, M. Combining latency and utilization in investigating 

human operator workload, 2011 IEEE International Conference on Systems, Man, 

and Cybernetics, (SMC’11) 

 

5.3.Human Search Using Algorithmically Generated Paths 
 

Humans use a variety of information about the environment in planning paths and 

typically generate relatively straight paths with few turns or backtracking.  Automated 

path planners by contrast, rely strongly on local data and as a consequence generate less 

smooth paths.   We conducted experiments to see whether operators could perform as 

well at a search and rescue task using algorithmically generated paths as with those 

generated by another human.  These results were reported in: 

 
Chien, S., Wang, H, & Lewis, M. (2010). Human vs. algorithmic path planning for search and 

rescue by robot teams, Proceedings of the 54th Annual Meeting of the Human Factors 

and Ergonomics Society (HFES’10), 379-383. 

Scerri, P., Velagapudi, P., Sycara, K., Wang, H., Chien, S. & Lewis, M. (2010). Towards an 

understanding of the impact of autonomous path planning on victim search in USAR, 

Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and 

Systems (IROS’10), 383-388.  

 

6. Development of queuing models to characterize and aid multi robot 
control (Lead: CMU-Robotics) 
 

6.1.Service level Differentiation 
 
We explored the effects of service level differentiation on a multi-robot control system. 

We investigated the conjecture that duration of human interaction, interaction time (IT),  
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and quality are correlated with performance and length of the subsequent neglect interval, 

called neglect time (NT) and explored the tradeoffs for multirobot systems.  We 

examined the premise that although long interaction time between robots and operators 

hurts the efficiency of the system, it allows robots longer neglect times and better 

performance thus benefiting the system. We addressed the problem of how to choose the 

optimal service level for an operator in a system through a service level differentiation 

model. The model identifies the optimal service strategy to maximize system 

performance in multi-robot control through a service level differentiation method based 

on two types of service: high-quality-long-time and low-quality-short-time.   The 

operator offers high quality service with probability p and low quality service with 

probability 1-p. The problem is to find the probability p* that maximizes system 

performance.  

 

Modeling different levels of service is motivated by real human performance data which 

shows a wide variety of ITs related to variations in demands on the operator.  While the 

earlier neglect tolerance model assumed a fixed efficiency threshold for each robot our 

model relates IT and NT to optimal system performance allowing the individual 

thresholds to vary.   This increased flexibility not only improves team performance but 

agrees with human data showing performance per robot to decrease smoothly with 

increasing team size rather than dropping abruptly upon reaching the fan-out threshold. 

We modeled service level differentiation in two types of queuing systems (a) open queue, 

and (b) closed queue. Open queue systems make the assumption that robots arrive at the 

queue according to some arrival process (usually Poisson), get serviced and then leave 

the system. Most of queuing models in the literature are open queue because they are 

easier to analyze. We were able to find exact analytic solution for the optimal p* in the 

open queue model of service differentiation. This is an important contribution. 

 

While an open system model may provide an approximation of systems with long NTs it 

is limited in its ability to accommodate the assumption of repeated interactions made by 

the neglect tolerance model and fan-out estimators.  To address this, we developed the 

first closed system model for human-robot teams that meets the assumptions of Crandall’s 

(2005) informal neglect tolerance model.  A closed system model is one where  robots 

arrive, get served and return for service. Close queue models are far more difficult to 

construct and analyze than open queue ones because of the interdependence between the 

service process and the arrival process. Close queue models are even more challenging to 

develop and analyze when service differentiation is also modeled. However, close queue 

models with service differentiation are applicable to human control of multiple robots 

since typically the operator controls a known number of robots that may require repeated 

service during system operation, thus returning to the queue. 

  

Since it is extremely challenging to find exact analytic optimal solutions for close queue 

models we developed techniques to find solutions algorithmically. Experimental results 

comparing system performance for different values of system parameters show that a 

mixed strategy is a general way to get optimal system performance for a large variety of 
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system parameter settings (e.g.; different values of  λ, the arrival rate parameter of the 

Poisson process, number of robots etc) and in all cases is no worse than a pure strategy.  

Results were reported in: 

 

Xu, Y, Dai, T., Sycara, K. & Lewis, M. (2010). Service level differentiation in multi-

robots control, Proceedings of the 2010 IEEE/RSJ International Conference on 

Intelligent Robots and Systems (IROS’10), October 18-22, Taipei, Taiwan, 2224-

2230. 

 

6.2 Game Theoretic Model of Queuing to Schedule Operator Attention 
 
In order to increase human span of control, increased robot automation is needed. In 

particular, the ability of robots to self-reflect and self-monitor frees the operator from 

having to monitor the progress of the robots. This, in turn increases the neglect time, 

given a particular interaction time. We developed a game-theoretic queuing model that 

addresses robot self-assessment in human-robot-interaction systems. Four issues were 

incorporated based on the theory of queuing and performance: 1) individual differences 

in operator skills/capabilities, 2) differences in difficulty of presenting tasks, 3) trade-off 

between human interaction and performance and 4) the impact of task heterogeneity in 

the optimal service decision-making and system efficiency. Our model makes the 

additional plausible assumption that increasing the human operators’ skill level or the 

service duration (interaction time) will lead to equivalent or longer subsequent neglect 

times. We explore the situation in which UVs are empowered with self-assessment and 

can choose their operator rather than requiring a centralized queue manager.  

 

Our model takes into account a variety of parameters likely to affect multi UV control. 

The single-human/multi-robot system is modeled as an open queuing system in which 

different types of arriving UVs require varying degrees of attention (reservation utility) 

with differing costs of continuing to operate in their degraded mode (waiting costs). Our 

key findings include: 
 

  
 
Figure 8: Two figures showing sensitivity of optimal service rate to performance under 
various conditions 
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- In the baseline model, all the robot tasks are assumed to be homogeneous in both 

reservation utility and waiting costs. The optimal service rate is shown to be 

increasing in the human operator’s skill level and decreasing in the reservation 

utility. Counter-intuitively, we also show that the optimal service rate decreases in 

the waiting costs (see Figure 8 right hand figure). In other words, the more 

impatient each robot is, the more time the human operator should spend on 

servicing it. The rationale is that the human operator provides value-added 

service, and higher service quality is required to compensate for utility loss 

associated with queuing time. 

 

- When task heterogeneity in waiting costs is incorporated, we show that the 

optimal service rate still increases in the human operator’s skill level. However, 

an increased reservation utility can lead to either a higher or a lower optimal 

service rate (see Figure 7). 

 

- When the task heterogeneity in reservation utility is accounted, we show that the 

optimal service rate increases and stays roughly constant as the waiting costs 

increases.  This is different from the baseline model since in this case a higher 

waiting cost increases the system’s pressure for speeding up and reducing the 

system delay. 
 

The simplicity of our model allows it to be extended to more complex situations and can 

be easily used in applications. We have also investigated the multi-operator-multi-robots 

case in which the tradeoff lies not only in the one-shot interaction between robots and a 

single operator, but also in how to coordinate different human operators so as to achieve 

the best system performance.  
 

Work developing scheduling models for improving performance of human multi UV 

systems was reported in: 
 

Dai, T, Sycara, K., Lewis, M. A game theoretic queuing approach to self-assessment in human-

robot interaction systems. IEEE International Conference on Robotics and Automation 

(ICRA 2011), May 9-13, Shanghai, China, 2011.  

Ying Xu, Tinglong Dai, Katia Sycara, Michael Lewis. 2012. A Mechanism Design Model in 

Multi-Robot Service Queues with Strategic Operators and Asymmetric Information. 

Proceedings of the 51st IEEE Conference on Decision and Control: CDC’12 

 

 

7. Scalable Displays (Lead: U of Pittsburgh in collaboration with CMU) 
 

A complementary approach to using autonomous coordination of robots in order to 

increase the operator’s span of control, is to (a) reduce the operator’s burden of 

monitoring the UV cameras and (b) helping in managing the vast amounts of information 

coming from the cameras. To help with reducing the operator’s monitoring burden, we 

developed techniques to allow  robot self-reflection. Self-reflection allows the robots to 

report suspected failures, thus alleviating operator monitoring for failures, though the 

primary monitoring task of searching for victims is still left to the operator. The queuing 



26 

 

approaches (see section 6) that we have developed and tested allow the self-reporting 

robots to appear as customers in a queue, thus allowing optimized scheduling of operator 

attention. To allow the operator to best manage the amounts of information returned form 

the cameras, we have  developed asynchronous display approaches that allow the 

operator to inspect non redundant imagery in context.   
 

7.1 SUAVE 
 

The problem is simplest for UAV images which can be textured onto a map.  New 

images of a location replace old ones and the map provides a spatial context for the 

images.  Earlier picture-in-picture displays used the approach of painting imagery onto a 

map to provide context, however, as an asynchronous display, SUAVE allows the 

operator to inspect the entire map using world-in-miniature and fly-through techniques. 

Experiments testing this approach were reported in: 
 

Abedin, S., Brooks, N., Owens, S., Scerri, P., Lewis, M., & Sycara, K. SUAVE: Integrating UAV 

Video Using a 3D Model, Proceedings of the 55th Annual Meeting Human Factors and 

Ergonomics Society (HFES’11). 

Abedin, S., Wang, H., Lee, P., Lewis, M., Brooks, N., Owens, S., Scerri, P. and Sycara, K. 

SUAVE: Integrating UAV Video Using a 3D Model 2011 IEEE International 

Conference on Systems, Man, and Cybernetics, (SMC’11) 

 

7.2 Image Queue 
 

Organizing UGV imagery is more difficult than for UAVs because it has no natural 

organizational context such as a map.  The same object will show great variation in size 

and appearance as it is viewed from different angles and distances.  When multiple UGVs 

are involved it can be extremely difficult sorting out camera views to identify overlaps.  

Our experimental Image Queue display addresses this problem by storing video along 

with UGV pose and location.  The database is then searched to identify images providing 

the greatest additional visual coverage.  This has required a more sophisticated search in 

which visual coverage is coordinated with mapping. During the search the operator 

examines a small number of prioritized “film strips” to see what has been seen by the 

team of robots By assembling a collection of non-overlapping high coverage images, the  

 
Figure 9: Image Queue selects non-redundant images: image  1 is selected since image 2 is 
contained wholly within image 1 and image 3 is contained partially within image 1 
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display allows the operator to observe most of the information contained in large pool of 

imagery collected by a UGV team.  The first experiment compared search and rescue 

performance between operators using the image queue and others relying on streaming 

video.  In a second experiment the utility associated with gains in coverage was 

augmented with ATR for victims in selecting imagery to be viewed.  In the current test 

environment after a search is complete, the top ten frames in the queue account for more 

than 70% of the map while the top 100 account for over 99%.   

 
Results were reported in: 

 

Wang, H., Kolling, A., Abedin, S., Lee, P., Chien, S., Lewis, M., Brooks, N., Owens, S., Scerri, 

P. & Sycara, K. (2011) Scalable target detection for large robot teams, Proceedings of the 

6th ACM/IEEE International Conference on Human-Robot Interaction. 

Scerri, P., Owens, S., Sycara, K. & Lewis, M. (2010). User evaluation of a GUI for controlling an 

autonomous persistent surveillance team, In SPIE’10. 

Brooks, N., Wang, H., Chien, S., Lewis, M., Scerri, P.,& Sycara, K.  Asynchronous Control with 

ATR for Large Robot Teams, Proceedings of the 55th Annual Meeting Human Factors 

and Ergonomics Society (HFES’11).  

Wang, H., Chien, S., Lewis, M., Brooks, N. and Sycara, K. Image Queue: Scalable Display for 

Multiple Robots, 2011 IEEE/RSJ International Conference on Intelligent Robots and 

Systems (IROS 2011). 

 

 

8. Dynamic Targets (Lead: U of Pittsburgh in collaboration with CMU) 
 

We developed an approach for a pursuit-evasion problem that considers a 2.5d 

environment represented by a height map. Such a representation is particularly suitable 

for large-scale outdoor pursuit-evasion, captures some aspects of 3d visibility and can 

include target heights. In our approach we constructed a graph representation of the 

environment by sampling strategic locations and computing their detection sets, an 

extended notion of visibility. From the graph we computed strategies using previous 

work on graph-searching. These strategies were used to coordinate the robot team and to 

generate paths for all robots using an appropriate classification of the terrain. In 

experiments we investigated the performance of our approach and provided examples 

including a sample map with multiple loops and elevation plateaus and two realistic 

maps, a village and a mountain range. To the best of our knowledge the presented 

approach was the first viable solution to 2.5d pursuit-evasion with height maps. 
 

To examine whether the approach would be useful in realistic environments, we 

conducted a pilot experiment with 10 humans, 8 pursuers and 2 evaders. The 

environment was Gascola, a wooded and uneven terrain area outside of Pittsburgh. The 2 

evaders were free to move as they pleased to avoid detection; the 8 pursuers, each 

carrying an  iPAD, acted as robots, obeying the directions of the algorithm, given to them 

via a GUI. (see figure below). The pursuers were successful in all trials. 
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Figure 10: (a) Satellite map of Gascola overlaid with a mask denoting nontraversable terrain 
(red), shrubs and trees (green). Darker areas are not part of the experiment while lighter 
areas are. A graph is overlaid on the map (not shown here) that allows generation of best 
locations and paths for the pursuers to follow. (b) Screenshot of the IPad application showing 
satellite imagery and the mask. Agents are instructed to go to goal locations and receive a 
suggested path shown with a light blue line. The area an agent is responsible for at a step is 
marked with a light blue polygon. (a) (b) 
 

Results of these experiments were reported in: 

 

Kleiner, A., Kolling, A., Lewis, M., Sycara, K.,  “Hierarchical visibility for guaranteed 

search in large-scale outdoor terrain“, Journal of Autonomous Agents and Multi-

Agent Systems, 2011, DOI 10.1007/s10458-011-9180-7 

 
Kolling, A., Kleiner, A., Lewis, M. Sycara, K. Computing and executing strategies for multi-

robot search. IEEE International Conference on Robotics and Automation (ICRA 2011), 

May 9-13, Shanghai, China, 2011. 

Kolling, A., Kleiner, A., Lewis, M., & Sycara, M. (2010). Pursuit-evasion in 2.5d based on team-

visibility, Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent 

Robots and Systems (IROS’10), 4610 – 4616. 

 

 

9. Human Influence of Robotic Swarms (Lead: U. of Pitt in collaboration 
with CMU) 
 

9.1. Human Control of Swarms 
 

Many approaches to coordinating large numbers of UVs rely on local control laws and 

emergent behavior.  Because behavior is emergent rather than designed a priori it is 

difficult to define mechanisms allowing human control.  We have begun systematic 
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research on this problem using a limited number of “communication graphs” that 

constrain behavior to maintain connectivity and seeking ways through manipulation of 

connectivity and basic coordination algorithms (rendezvous, deployment, boundary 

following) to allow human control 

 

Behaviors of swarm robotic systems can be influenced by a human by altering the 

behavior of some swarm members, altering the control laws that the individual swarm 

members use or altering the environment in which the swarm operates.    We have 

systematically investigated the effect of influencing the swarm through these three 

different schemes. Our research efforts were geared towards understanding the following 

key questions: (1) For swarm robotic systems when does human influence benefit the 

overall system? (2) What type of influence, namely, directly influencing swarm member 

behaviors or influencing swarm behaviors through environment modification helps 

human operators perform better, if at all? (3) How does the mismatch in operator 

understanding of swarm state and swarm member understanding of operator intent affect 

the performance of the overall system? (4) How can the adverse effects of operator-

swarm state or intent mismatch be mitigated? 

To answer the above questions, we have conducted theoretical studies as well as human-

subject experiments, which we believe are the first of its kind in the context of human 

control of swarm robotic systems. For the experiments we used the task domain of 

information foraging. Our key findings are as follows: 

 We find that although the autonomous algorithms perform better than humans in 

very simple environments (with no obstacles) as the complexity of the 

environment increases, the human performs significantly better. We also find that 

novice human operators perform better by directly influencing the swarm 

members rather than by altering the environment (by activating/deactivating 

beacons in the environment).  

 When there is an intent mismatch between the human and the robots and the 

operator is unaware of the exact state positions (either due to limitations in 

communication bandwidth or communication delay), the operator performance 

decreases significantly when compared to the complete state information 

condition. However, using techniques like display of statistics of the spatial 

distribution of the agents or predictive display, it is possible to mitigate the effects 

of uncertainty.  

 We have introduced the concept of neglect benevolence, as a “meta-strategy” that 

human operators use to control swarms. In neglect benevolence, a human operator 

allows the swarm to evolve on its own before giving new commands. From our 

experiments, we find that operators exploited neglect benevolence in different 

ways to develop successful strategies for controlling the swarm in the presence of 

uncertain information about the swarm state.  

 

9.2. Principles of human control for large swarms 

Our first experiment was set up for investigating principles of human control for large 

swarms. The swarm robots were given some coordinated behaviors like deployment, 

flocking, and rendezvous along with some primitive behaviors like stop, go to a target 
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location, and random movement. The operator could control the robots in two ways (a) 

by selecting a subset of robots and specifying a behavior for them (called selection 

control hereafter) and (b) by placing beacons in the environment (called beacon control 

hereafter) that could set the behavior mode of robots within a certain distance of the 

beacon (this is a way of influencing robots by “modifying the environment”). We chose 

five different environments of different levels of complexity (see Figure ). 

The results indicate that in environment (a) and (b) the autonomous algorithm performs 

significantly better than the human operator using selection control. However, in more 

complex environments (maps (c), (d), and (e)), selection control by the human leads to 

significantly better performance. On the other hand, using beacon control, the operators 

either underperformed compared to the other two conditions or there was no significant 

difference in performance. Furthermore, as the number of robots increased, although both 

selection control and beacon control showed decrease in performance, the decrease for 

selection control was much less than that for beacon control. Thus, these findings seem to 

suggest that it is easier for novice operators to control the swarm robots directly rather 

than through the environment.  

Walker, P., Kolling, A. and Lewis, M.  Human Exploration Patterns in Unknown, Time-sensitive 

Environments, 2011 IEEE International Conference on Systems, Man, and Cybernetics, 

(SMC’11) 

Walker, P., Amnipur Amraii, S., Lewis, M., Chakraborty, N., Sycara, K. Human Control of 

Leader-Based Swarms Proceedings of the Conference on System Man and Cybernetics, 

Manchester, UK.,  October 13-16 2013. 

 

9.3 Swarm Control with imperfect information  
 

One assumption that is implicitly made in most of the work on human control of swarms 

is that the swarm “understands” the operator intent perfectly and the operator knows the 

state (e.g., positions of the swarm members perfectly), i.e., the operator is omniscient. 

However, in practice, these assumptions are often violated. Two key challenges in human 

swarm interaction are that (a) the state information of the robot available to the human 

may not be accurate and (b) there may be a mismatch between the intent of the operator 

and the robots understanding of the human intent. The error in the swarm state available 

to the human and the intent mismatch can happen due to communication limitations (e.g., 

bandwidth limitations or communication latency) and localization error of individual 

robots.  We performed experimental studies focusing on the effect of communication 

bandwidth limitations and communication latency on human control of swarms. 

 
9.3.1 Swarm Control with Communication Bandwidth Constraints   

 

Limited communication bandwidth is a constraint that arises in many practical scenarios 

such as undersea missions or networks of limited capability robots. In our experimental 

scenario, a human operator has to guide a robotic swarm to find unknown targets in a 

given area. The area is divided into a finite number of regions (whose boundaries are 

unknown to the interface) and the operator has to match the target found to the regions. 

The robots have a single behavior, namely achieving consensus on direction on motion. 

The humans can guide the swarm by giving them a point in the environment towards  
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Figure 11 : Five tests environment of different complexity. Obstacles are black and free spaces  
are white. 

which the robots have to travel. The robots are assumed to have a localization error and 

the robot position and orientation is assumed to be a Gaussian distribution. 

 

In our experiment each subject performs the mission under three conditions (that are 

presented to them in a random order), namely, (a) low swarm-to-human bandwidth and 

low intra-swarm bandwidth (low bandwidth condition), (b) low swarm-to-human 

bandwidth and high intra-swarm bandwidth (medium bandwidth condition) and (c) high 

bandwidth between swarm and operator (high bandwidth condition). For low bandwidth 

condition, we assume that only one robot can send its state information at a time instant, 

this assumption creates displayed information that lacks temporal and spatial resolution. 

For the medium bandwidth condition, the swarm communicates among themselves to 

estimate their mean orientation and standard deviation of orientation, which is displayed 

on the screen creating a limited spatial resolution of the swarm’s state. In the high 

bandwidth condition, all the robots could send their position and orientation information 
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to the operator creating high spatial and temporal resolution given the errors of the 

individual robots.  

 

Our experimental results (see Figure (12)) indicate that, as expected, there is a 

degradation of performance in the low bandwidth condition compared to the high 

bandwidth condition. However, in the medium bandwidth condition, where the human 

had an understanding of the state of consensus of the robots (and thereby whether the 

robots were moving in the direction the human desired) from the standard deviation of 

orientation, they performed as well as the high bandwidth condition. These results show 

that even in the absence of complete information about the swarm states, if task-

appropriate statistics of the swarm is displayed to the user, the effects of incomplete state 

information can be mitigated. Results are reported in selected publications below. 

 
Figure 12 : Performance of the medium and high bandwidth condition is comparable, while 

both outperform the low bandwidth condition 
 

 

Kolling, A., Sycara, K., Nunnally, S., Lewis, M. Human Swarm Interaction: An Experimental 

Study of Two Types of Interaction with Foraging Swarms, Journal of Human-Robot 

Interaction, June 2013. 

Nunnally, S., Walker, P., Lewis, M., Kolling, A., Chakraborty, N., Sycara, K. & Goodrich, M. 

Human Influence of Robotic Swarms with Bandwidth and Localization Issues, 2012 

IEEE International Conference on Systems, Man, and Cybernetics (SMC’12), Oct 14-17, 

Seoul, Korea, 2012 

 

 
9.3.2 Swarm Control with Communication Latency 

  

A second experiment investigated effects of communication delay on human performance 

in controlling swarms.  In many operational settings, human operators are remotely 

located and the communication environment is harsh. Hence, there exists some latency in 

information (or control command) transfer between the human and the swarm. In our 

experimental foraging scenario, a human operator guides a swarm to find unknown 

targets in a given area. The robots have a single behavior, namely flocking, and the 

operator applies inputs (a) to give a desired direction of flocking to the robots and (b) to 

enforce cohesiveness among the robots (by activating constraints for attracting neighbors 

that are far away and repelling neighbors that are very close). In our experiment, each 

subject performs the mission under three conditions, namely, (a) without any latency 
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(control condition), (b) with equal latency in the human to swarm and swarm to human 

communication channel (c) the same latency as (b) but with a predictive display. In all 

conditions, each robot has some error in transforming the orientation heading to its own 

reference frame (due to localization errors), which is modeled as a Gaussian distribution.  

 

Our experimental results (see Figure (13)) indicate that, as expected, there is a 

degradation of performance due to latency. However, when using the predictive display, 

the performance of the operators can be as good as it was in the absence of delay 

(control condition). We also found that the users exhibited different strategies for 

effectively controlling the swarm.  

 
Figure 13: The performance of the operators with latency and predictive display is 
comparable with the control condition of no latency and significantly better than the latency 
condition without predictive display. 
 

9.3.3 Neglect Benevolence 

 

The human operator needs to influence the swarm without adversely disturbing the 

swarm (such as breaking it into many small connected components). The effect of an 

operator command is dependent on swarm state, which gradually evolves to a steady state 

after a command has been issued. To capture the idea that humans may need to observe 

the evolution of the swarm state before acting, we investigate a novel concept called 

neglect benevolence, whereby neglecting the swarm  before issuing new commands may 

be beneficial to overall mission performance. Our results show that operators came up 

with different strategies by exploiting neglect benevolence that resulted in improved 

performance. In general, human operators are limited in their ability to estimate the best 

time to give input to the swarm, (e.g. when mission goals change). Therefore, automated 

aids that calculate the optimal input time could help the human operator achieve best 

system performance. This raises the important question of the existence and means of 

calculation of the optimal time for the operator to give input to the swarm in order to 

optimize swarm behavior. This could have significant practical implications. Therefore, 

we (a) formally defined the new notion of Neglect Benevolence, (b)  we proved the 

existence of Neglect Benevolence for a set of linear dynamical systems, (c) , we provided 

an analytic characterization and an algorithm for calculating the optimal input time.  
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Walker, P., Kolling, A., Chakraborty, N., Nunnally, S., Sycara, K. & Lewis, M.. Neglect 

Benevolence in Human Control of Swarms in the Presence of Latency, 2012 IEEE 

International Conference on Systems, Man, and Cybernetics (SMC’12), Oct 14-17, 

Seoul, Korea, 2012. 

 

 
10. Human Decision Making in the Presence of Complex Automation (Lead: 
Cornell)  
 

10.1.Modeling of Human Decisions in complex DDD games, (in collaboration 
with GMU)  
 

It is becoming increasingly important to be able to predict human operator effectiveness 

and performance in large scale human-automation systems. A key problem is to 

determine how human performance in such systems changes under varying task 

conditions in applications that prohibit exhaustive experimental evaluation. To this end, 

relevant tasking conditions and cognitive factors such as working memory can be used to 

construct scalable probabilistic human performance models from limited experimental 

data. Our groups studied different statistical modeling methods for predicting human 

operator performance in a DDD air defense simulation scenario, where several 

performance metrics were modeled as a function of task load, message quality, and 

operator working memory capacity. It was found that state-of-the-art Gaussian Process 

(GP) regression models can make predictions with uncertainty bounds that are as good as 

or better than simple linear regression and discrete Bayesian network (BN) prediction 

models. While the probabilistic nature of GP and BN models was found to be very useful 

in removing irrelevant/unimportant factors for predicting certain performance measures, 

these models also demanded more computational resources for learning and  
 

 

 
Figure 14: Predicted Red Zone Safety Performance (RZP) for DDD experiments. RZP mean and 
standard deviations for GP and simple linear regression (LR) models using novel input values 
for task load (TL), message quality (MQ), and working memory (WM) values not observed in 
training data. Note that LR results are completely negative in the last plot. TL values from left 
to right correspond to scenarios with 10, 80, and 180 enemy aircraft, respectively (note that 
only 31 or 47 enemy aircraft were actually encountered in the experimental trials). 
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implementation than simple linear regression.  As such, the usefulness of each model in 

predicting human performance depends strongly on computational constraints and the 

availability of experimental data for a particular application. 

 

N. Ahmed, M. Campbell, “On Estimating Simple Probabilistic Discriminative Models 

with Subclasses,” Expert Systems With Applications, published on-line Dec 2011, 

Vol 39, No 7, June 2012, pp 6659–6664. 
 

10.2. Human-Robotic Information Fusion 
 

Although humans play important roles as both operators/supervisors in human-robot 

systems, their ability to contribute useful information (beyond object classification) in 

many scenarios has been largely overlooked. Given the limited amount of information 

obtainable through robot perception alone, proper fusion human-generated information 

could greatly enhance the situational awareness and performance of human-robot teams 

in applications such as surveillance and target search. Since humans tend to compress 

information about various physical phenomena into “fuzzy” discrete categories when 

relating observations, appropriate human “likelihood models” can be modeled 

probabilistically via machine learning techniques. “Soft” observations under these 

likelihoods can then be recursively fused with conventional “hard” robot sensor data in a 

rigorous Bayesian manner, so that human agents can be treated as soft sensory input 

channels. We developed a sensor fusion architecture, where robots and humans can fuse 

information at different levels of the perceived model, as would intuitively occur because 

humans are, in general, good reasoners. 

 

We have developed recursive data fusion approximations for a wide class of soft human 

sensor observations using variational Bayes, importance sampling, and Gaussian mixture 

modeling techniques. Furthermore, we have experimentally validated the proposed fusion 

strategy on a real multi-target search problem with a human-robot team. The approach 

uses a Bayesian estimation framework for mapping and classifying objects in the 

surrounding of a mobile robot based on 2D laser range data and additional human input. 

Object observations made by humans through the robot's camera are treated as additional 

probabilistic observations inside a recursive Bayes estimator for determining an object's 

ID. A Rao-Blackwellized particle filter implementation is chosen for simultaneously 

estimating the locations of objects, location measurement to object associations, and 

object class associations. Reliably detecting and identifying objects is one of the 

necessary basic skills of service robots, and this problem is far from being solved. 

 

Our results show that the proposed recursive Bayesian fusion of human and robot 

information leads to superior search performance in terms of mission completion time 

and number of targets found, even with poor prior target information.  

 
Ahmed, N. and Campbell, M., “Variational Bayesian Learning of Probabilistic Discriminative 

Models with Latent Softmax Variables,” IEEE Transactions on Signal Processing, on-

line April, 2011, Vol 59, No 7, July 2011, pp 3143-3154 
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R. Tse, N. Ahmed, M. Campbell, “Unified Mixture-Model Based Terrain Estimation with 

Markov Random Fields,” 2012 IEEE International Conference on Multisensor Fusion 

and Integration. 

N. Ahmed, J. Schoenberg, M. Campbell, “Fast Weighted Exponential Product Rules for Robust 

General Multi-Robot Data Fusion,” Robotics Science and Systems Conference, 2012.  

E. Sample, N. Ahmed, M. Campbell, “An Experimental Evaluation of Bayesian Soft Human 

Sensor Fusion in Robotic Systems,” 2012 AIAA Guidance, Navigation and Control 

Conference.  

 

 
Figure 15 - (a) Gaussian mixture prior pdf for target location. (b)-(e) Likelihood models for 
soft human observations. (f) Likelihood for robot's visual target detector. (g)-(l) Posterior 
Gaussian mixture pdfs resulting from Bayesian fusion of corresponding observations in (b)-
(f). 

10.3. Integration of Perception and Planning in Human-Vehicle systems, (in 
collaboration with MIT) 
 
Large scale human-robot teams must carefully coordinate their efforts to complete 

multiple tasks in highly uncertain environments. In particular, the need to gather more 

information to reduce uncertainty in such environments must be balanced with the need 

to complete all required tasks in an efficient and timely manner. The goal of this work is 

to develop robust probabilistic methods for sharing tasks and all available information 

relevant to those tasks among a networked team of multiple human-robot agents. This 

work focuses on three key aspects of networked human-robot team cooperation in 

uncertain environments: decentralized high-level information-based task planning; local 

information-based low-level task execution; and Bayesian fusion of robot sensor data 

with observations obtained from human agents. Hardware based experiments based on an 

indoor multi-target search application with an actual human-robot team were conducted 

to assess the performance of Consensus Based Bundle Adjustment (CBBA) algorithms 

task allocation with two different task execution strategies (IRRT vs. Greedy MDP path 

planning) and human/robot data fusion modalities (robot data only vs. robot + human 

data). The results show that it is possible to greatly enhance human-robot team 

performance (e.g. in terms of number of targets found, time to find all targets, and 

distance traveled by robots) with the proposed planning strategies as long as they are 

tuned appropriately to handle spontaneous human information reports.   
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Figure 16: MIT-Cornell collaboration:  Real-time information-rich task allocation, trajectory planning 
and target estimation for human-robot search and track missions.  Images show: real-time fusion 
architecture (top-left), Gaussian multi-modal fusion for target estimation (top-right), real-time 
experimental search and track mission using human-robot team (bottom-left), and human-robot 
interface (HRI) depicting operator’s view and interface options for soft inputs (bottom-right) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 17:  – Probability of locating each of 5 targets at their true locations over time for indoor multi-target 

search experiment with human-robot team.  Probabilities are calculated using Gaussian mixture pdfs that 

represent uncertainty in target locations over the search map following data fusion. Left plot shows probabilities 

when only robot sensor data is fused together; the robots are not confident that the targets are near their true 

locations and so take longer to find them using a greedy search. Right plot shows probabilities when human 

observations are fused with robot data; the robots become more confident that targets are near their true 

locations and take less time to find the targets. In both plots, the robots are re-assigned targets to search every 4 

sec by CBBA. 
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Results were reported in: 

 
Ponda, S., Ahmed, N., Luders, B., Sample, E., Levine, D., Hoossainy, T., Shah, D., Campbell, 

M., and How, J. P., “Decentralized Information-Rich Planning and Hybrid Sensor Fusion 

for Uncertainty Reduction in Human-Robot Missions,” AIAA Guidance, Navigation and 

Control Conference, (GNC), Portland, OR, August 2011 (Best paper award). 

 

10.4 Human Network Experiments 
 
 We performed   an experiment where five humans were networked together and used 

handheld PCs to perform a search experiment outdoors. Ad hoc networking was 

performed using handheld computers; uncertain variables fused included 1) yes/no found 

target; 2) human location and motion (GPS with a motion filter); 3) human head 

orientation (for looking); 4) uncertainty model in human’s ability to find target (bearing 

and range), found empirically from human decision data. A key element was exploring 

different sharing methodologies which maintained probabilistic formalism, yet could be 

implemented on computers. Interesting elements of the experiments came out, such as 

fusing very uncertain data as people walked through buildings. We completed a series of 

experiments with the five human nodes.  

 

10.5.Qualitative Path Planner  
 
We developed formal inference algorithms that enable humans to qualitatively draw 

plans that robots can then follow. The Qualitative Path Planner (QPP) is a proposed 

method for controlling a mobile robot using qualitative inputs in the context of an 

approximate map, such as one sketched by a human.  By defining the desired trajectory 

with respect to observable landmarks, human operators can send semi-autonomous robots 

into areas for which a true map is not available and teleoperation is not desirable.  Such 

applications may include planetary exploration, in which large communication delays 

necessitate more autonomous navigation while still keeping the human operator `in 

charge' of the robot, or military/rescue operations that may require teams of robots to 

operate in unmapped environments or areas with poor communication.   
 

 

11. Human Team Interaction with Automation (Lead: GMU) 
 

11.1. Linear and Bayesian Probabilistic Models of Networked Human 
System Performance 
 

Human-automation performance in a dynamic decision-making task requiring 

supervision of multiple unmanned air vehicle (UAV) assets was examined and modeled, 

in two parts. First, a human-in-the-loop simulation experiment was carried out examining 

human-UAV system performance under different levels of task load that posed increasing 

demands on the operator’s working memory capacity (de Visser et al., 2010). The effects 

of a networked environment on performance were also examined by manipulating the 

number and quality of network message traffic to the human operator provided by an 
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automated agent. Both task load and message quality affected performance, but these 

effects were modulated by individual differences in participant working memory 

capacity. The performance data were then analyzed using linear regression and Bayesian 

probabilistic models namely Bayesian networks and Gaussian processes (Ahmed et al., 

2011). Working memory capacity was a parameter in all the models. The relative utilities 

of the different models in prediction of several different aspects of human-automation 

performance were evaluated. While linear regression and Gaussian processes provided 

the best overall predictions, the “best” model for a specific application depends on 

desired tradeoffs between computational complexity, performance requirements, and data 

availability.   
 

Data were obtained for the effects of different levels of task load and network message 

quality on human-UAV system performance. Both task load and message quality affected 

human-automation performance, but these effects were modulated by individual 

differences in participant working memory capacity. These data were used to learn 

predictive statistical operator performance models based on classical linear regression, 

probabilistic Bayesian networks (BN), and nonparametric Gaussian processes (GPs), 

where individual operator working memory capacity was a parameter in all models. The 

linear and GP performance models provided the best overall predictions, while the BN 

and GP models were most robust to the influence of irrelevant factors. The results 

support the conclusion that high inter-individual variability can be dealt with by including 

operator working memory capacity in all such statistical models. However, the “best” 

model for a specific application depends on desired tradeoffs between computational 

complexity, performance requirements, and data availability. Finally, the GP models also 

allowed for prediction of performance in cases where experimental data were not 

available (e.g., larger number of UAVs, greater network message complexity, higher 

operator working memory capacity). If validated in follow-up analyses, these models will 

achieve one of the overall goals of the MURI project, namely “scaling up” of models of 

networked human-automation performance. 
 

Ahmed, N., de Visser, E., Shaw, T., Mohamed-Ameen, A., Campbell, M. A., & Parasuraman, R. 

(2012). Predicting human-automation performance in networked systems using statistical 

models: The role of working memory capacity. Interacting with Computers (in press). 

Ahmed, N. and Campbell, M., “Variational Bayesian Learning of Probabilistic Discriminative 

Models with Latent Softmax Variables,” IEEE Transactions on Signal Processing, Vol 

59, No 7, July 2011, pp 3143-3154. 

de Visser, E., Shaw, T., Mohamed-Ameen, A., & Parasuraman, R. (2010,). Modeling human-

automation team performance in networked systems: Individual differences in working 

memory count.  Proceedings of the Human Factors and Ergonomics Society, Santa 

Monica, CA: Human Factors and Ergonomics Society. 

 
 

11.2 Team Performance and Communication within Networked Human-
Machine Systems 
  
In a previous study  we showed that the behavior of individual operators in a networked 

system involving supervisory control of multiple unmanned air vehicles (UAVs) could be 
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well characterized and modeled.  We explored the utility of both linear (de Visser et al., 

2010) and Bayesian probabilistic (Ahmed et al., 2011) models based on the tasking load 

imposed on the operator—e.g., the number of enemy targets to be handled in an air 

defense situation, the amount and quality of network message traffic, and individual 

differences in working memory capacity. However, a key feature of such supervisory 

control human-machine systems is that human operators typically work in teams, not in 

isolation. In air defense operations, different operators may be assigned to different 

monitoring territories and have different areas of responsibility but need to coordinate 

their actions with one another. One operator within a team can frequently experience a 

rapid increase in workload as a result of an enemy incursion into his or her area of 

responsibility. While that operator may require assistance, the immediate demands and 

stress associated with this rapid increase in workload might hinder that operator’s ability 

to effectively communicate the offloading of tasks to other members within the team. 

There may also be a cost to individual operators for working with team members in 

supervisory control tasks. In addition to the cognitive demands placed upon individual 

operators within a team, increased coordination and communication between team 

members may be another source of cognitive demand. 

 

Accordingly, this study examined the effects of task load and the reliability of an 

automated decision aid’s message traffic on team performance in a multi-UV simulation 

of an air defense task (McKendrick et al., 2011). Teams of two operators either received 

messages that were highly relevant (reliable) to the task they were currently performing, 

messages that were both relevant and irrelevant (unreliable), or no messages. Team 

performance was examined under conditions of low and high task load (number of enemy 

targets to be engaged), as in the previous single-operator study of de Visser et al. (2010).  

Our measure of team communication focused on the total amount of information 

conveyed from one teammate to another. We hypothesized that teams would 

communicate less during high task load. We also envisaged that teams would have higher 

communication scores when no network messages were provided, but less so when given 

reliable messages. We predicted that increased scores in “communication detail” would 

be associated with improved human-system performance. Finally, given that the previous 

single-operator study of de Visser et al. (2010) found that working memory capacity was 

a significant contributor to variability in human-system performance, we also obtained 

verbal and spatial working memory span scores in the present two-person team study, 

with the expectation that total human-system team performance would also be linked to 

individual working memory capacity.  

 

Performance was degraded by high task load and improved with an automated decision 

aid.  In addition, team working memory, defined as the average of individual working 

memory capacity scores, was associated with superior team performance. Higher levels 

of task load increased the amount of information communicated by teams whereas the 

presence of an automated decision aid decreased the amount of information 

communicated by teams. The results have implications for models of team cognition for 

teams performing similar tasks in a shared, networked human-machine system.  
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McKendrick, R., Shaw, T., Saqer, H., de Visser, E., & Parasuraman, R. (2011). Team 

performance and communication within networked supervisory control human-machine 

systems. In Proceedings of the Annual Conference of the Human Factors and 

Ergonomics Society, Santa Monica, CA. 

 

 

11.3. Adaptive Automation to Improve Human Performance in Supervision of 
Multiple Uninhabited Aerial Vehicles: Individual Markers of Performance  
  

Adaptive automation has been shown to offer flexible, context-dependent, and user-

specific automation that can enhance human-system performance. While several 

invocation methods for adaptive automation have been proposed and tested in 

experimental settings, it is not clear which of these methods can practically be 

implemented in operational environments. It is therefore important to explore measures 

that are both predictive of individual performance and that can be easily administered. 

This study examined both baseline manual performance and working memory capacity to 

predict future performance with automation (Saqer et al., 2011). Participants were 

assisted by context-dependent adaptive automation during a simulated command and 

control task. Results showed that baseline performance without automation predicted 

overall human-automation performance. Working memory capacity did not predict 

overall performance, but did predict effective use of the automated aids, so that 

participants with higher working memory scores used the aids more effectively. These 

results suggest that effectiveness of human-automation teams can be predicted with 

quick, cost-efficient, easily measureable markers of performance and can therefore 

provide practical invocation strategies for adaptive automation.  
  

Saqer, H., de Visser, E., Emfield, A., Shaw, T.,  & Parasuraman, R. (2011). Adaptive automation 

to improve human performance in supervision of multiple uninhabited aerial vehicles: 

Individual markers of performance. In Proceedings of the Annual Conference of the 

Human Factors and Ergonomics Society, Santa Monica, CA. 

 

11.4 Measuring Workload using Cerebral Blood Flow during Supervision of 
Multiple UAVs 
 

While automated systems have been shown to improve safety and efficiency in 

operational environments, automation failures can lead to abrupt shifts in workload.  

Subjective workload scales have been shown to be sensitive to differences in workload, 

but they are limited in their ability to assess dynamic, moment-to-moment workload 

variations.  Physiological measures may be better suited to assess dynamic workload in 

complex environments. Such measures can be used to drive adaptive automation. This 

study explored the feasibility of a relatively new physiological index, Transcranial 

Doppler Sonography (TCD) as a candidate for adaptive automation studies. Participants 

performed a long duration task involving supervisory control of multiple UAVs under 

varying levels of task load. In one group, enemy threats increased once late in the 

simulation, and in another group enemy threats increased at two points; once early and 

once late within the simulation. All participants completed a comparison condition in 

which there was no variation in the number of incoming enemy threats. Cerebral blood 
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flow velocity (CBFV), as measured by TCD, was measured during task performance. 

Performance was assessed by the ability of the operator to protect a no-fly zone from 

enemy incursion.  Subjective mental workload was assessed using the NASA-TLX.  As 

performance decreased during periods of high  task load, CBFV increased, and there was 

a close parallel between the CBFV and performance measures. The NASA-TLX was 

sensitive in detecting differences in workload between the two conditions, but the 

patterns of results of this subjective measure were insensitive to specific task elements.  

The results are interpreted in terms of a resource theory of task performance and show 

that the CBFV measure is sensitive to dynamic changes in task load in complex 

environments. The findings indicate that CBFV can be used for neuroadaptive 

automation to support operators supervising multiple UAVs. 

 

Parasuraman, R. (2011). Neuroergonomics: Brain, cognition, and performance at work. 

Current Directions in Psychological Science, 20, 181-186 

 

11.5 Effects of Message Modality on Decision Making Performance under  
Time Pressure 
 
This study examined the effects of variation in message modality (radio communications 

vs. text) on decision making performance in a simulated Command and Control Dynamic 

Targeting Cell.  The simulation environment for the experiment was provided by the 

Distributed Dynamic Decision-Making (DDD)  Simulator, version 4. The DDD is a 

distributed client server simulation that  provides a flexible framework in which to study 

individual  and team performance. In general, DDD simulations involve individual (and 

team) decision-making about complex  situations based on information and resources 

provided by the simulation and other team members. The simulation enables the  

manipulation of variables such as organizational structure and  mission scenario tasking.  

In addition, a variety of  performance measures can be recorded including items such  as 

tasks processed, latencies, and accuracies.  

 

In this study we used a scenario  involving a multi-sector air defense environment. Using 

the appropriate asset for the particular enemy target, participants were tasked with 

protecting their assigned  quadrant of no fly zones by destroying enemy targets  that 

entered it. Once an asset attacked a target it had to be returned to base as an asset; it was 

not permitted to attack  multiple targets. We examined operator performance and 

workload for participants deploying assets to attack enemy targets and their ability to 

concurrently monitor auditory or visual communications in three conditions of time 

pressure (low, medium, and high). Results showed a significant impact in high time-

pressure conditions, especially when operators had to process multiple sources of 

information from the same modality. These  findings are a critical step as to 

understanding multi-tasking performance in command and control environments in 

general and with regard to communication and spatial monitoring tasks in particular. In 

collaboration with Cornell University (see below) we plan to model the performance data 

from this study with a view to developing a basis for adaptive automation to improve 

human-system performance. 
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12. Consensus Based Real Time Distributed Planning (Lead: MIT) 

 

Teams of heterogeneous networked agents are regularly employed in autonomous 

missions (e.g. intelligence, surveillance and reconnaissance (ISR) operations).  Typically 

agents within the team have different roles and responsibilities, and ensuring proper 

coordination between them is critical for efficient mission execution.  However, as the 

number of agents, system components, and mission tasks increases, planning for such 

teams becomes increasingly complex, motivating the development of autonomous task 

allocation and planning methods that improve mission performance.  Planning for such 

teams involves solving complex combinatorial decision problems (NP-Hard), which scale 

poorly and for which optimal solutions are computationally intractable.  The underlying 

system models typically consist of stochastic, non-linear and time-varying dynamics and 

constraints, and the planning problem is further complicated by realistic mission 

considerations such as resource limitations (fuel, payload, bandwidth, etc), asynchronous 

communication environments, varying network connectivity constraints, and unknown 

dynamic environments with limited prior information. In this research we address this 

complex issue of planning for large heterogeneous networked teams by developing 

computationally efficient robust planning strategies that can effectively account for 

several of these realistic considerations, such as complex agent models, asynchronous 

and dynamic communication, and robustness to parameter uncertainty in score functions, 

transition dynamics, and constraints.   

 

In order to solve realistic planning problems for large heterogeneous networked teams in 

real time, it is necessary to employ planning algorithms that are computationally efficient 

and scalable to increasing numbers of agents and tasks.  Optimal solution methods for 

distributing tasks amongst a team of agents are computationally intractable even for 

moderate sized problems.  Many approximation techniques have been considered instead, 

however, most of these approaches involve centralized planning, which is typically high 

bandwidth, resource intensive, and slow to react to rapidly changing information.  

Distributed approaches present several advantages over centralized solutions such as 

parallelized computation and faster reaction to dynamic environments, however, these 

often rely on performing consensus on situational awareness among all agents, a process 

that is often slow and not guaranteed to converge if information about the environment is 

dynamic.   

 

In this project we developed  a real-time distributed planning algorithm, called the 

Consensus-Based Bundle Algorithm (CBBA), which performs plan consensus in the task 

space (rather than on situational awareness), providing provably good approximate 

solutions (both in terms of convergence time and quality) for multi-agent multi-task 

allocation problems over dynamic networks of heterogeneous agents   
 

12.1.Stochastic CBBA Framework  
 
The CBBA algorithm consists of iterations between two phases, bundle building and 

consensus. To embed uncertainty models into the CBBA framework, the bundle building 

phase of CBBA was modified to account for stochasticity in the score functions. In 
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particular, this involved each agent independently computing bids for tasks using a 

stochastic score function, and sharing these bids with other agents to determine winning 

agents and resolve conflicting assignments. The first stochastic metric considered was the 

expected-value metric, where agents computed the expected value of their score given 

their assigned task set. In particular, the sequential greedy process to determine which 

task to add to the current assignment involved each agent computing the marginal 

contribution to the expected-value score as a result of adding the new task to the current 

assignment. In missions where stronger performance guarantees than average 

performance were required, a stochastic metric to mitigate the worst-case possible 

mission outcomes could be used instead. Here agents could compute marginal scores and 

compute bids for tasks that maximized their performance in the worst-case. The process 

of computing the expected-value score or worst-case score of an assignment was 

nontrivial due to the complex coupling between tasks in an agent's path (for example, 

taking longer than expected on early tasks impacts the arrival times of subsequent tasks 

later in the path, thus affecting their scores), and numerical methods were employed to 

determine how uncertainty would propagate through the agent's assignment execution. 
 

N. Kopeikin, S. S. Ponda, L. B. Johnson, and J. P. How, “Dynamic mission planning for 

communication control in multiple unmanned aircraft teams,” Unmanned Systems, vol. 

01, no. 01, pp. 41–58, 2013. 

 

12.2 Chance-Constrained CBBA  
 
The previous section described how CBBA was extended to account for stochastic 

environments by optimizing expected value plans and maximizing worst-case mission 

performance. In some scenarios however, mitigating worst-case performance is too 

conservative, and some level of risk may be allowed. An alternate stochastic metric is the 

chance-constrained metric which provides more flexibility over the conservatism of the 

solution, while still guaranteeing that the mission performance will be at least as good as 

the proposed plan value within a certain allowable risk threshold. An issue with this 

chance-constrained metric however, is that agent scores are coupled through a 

probabilistic mission constraint and can no longer be optimized individually, limiting its 

use in distributed planning environments. In this work, we proposed an approximation to 

the chance-constrained optimization that allowed the problem to be decomposed into 

distributable chance-constrained sub-problems that could be leveraged within the robust 

CBBA planning framework. A primary component of this distributed approximation 

involved allocating individual agent risks given the global mission risk within a 

consistent framework. Due to the complex coupling between the risk allocation process 

and the planner assignment selection process, heuristic approximation methods were 

employed to approximate planner performance given different agent risk allocations. In 

particular, this work invoked the Central Limit Theorem to employ risk allocation 

strategies based on Gaussian distributions for both homogeneous and heterogeneous 

teams. The distributed chance-constrained CBBA algorithm was validated through 

simulation trials, and results showed large improvements over baseline (deterministic) 

CBBA, expected-value CBBA, and over worst-case conservative planning strategies, 

leading to higher mission performance within allowable risk thresholds.  Furthermore, the 

distributed chance-constrained CBBA algorithm achieved similar results to those 
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obtained by centralized chance-constrained methods, validating the distributed 

approximation. 
 

S. Ponda, J. Redding, H.L. Choi, J.P. How, M. Vavrina, J. Vian, "Decentralized Planning for 

Complex Missions with Dynamic Communication Constraints", American Control 

Conference, 2010, Baltimore, MD 

 

S. Ponda, H.L. Choi, J.P. How, "Predictive Planning for Heterogeneous Human-Robot Teams", 

AIAA Infotech@Aerospace, 2010, Atlanta, GA 

 

12.3. Information-Rich Planning to Reduce Uncertainty  
 
The previous sections described methods for embedding distribution models into the 

planning framework to enable robust planning strategies given uncertainty in the 

environment. A more active approach to handling uncertainty is to use information-based 

planning strategies to reduce the uncertainty in the environment. The basic notion is that, 

by actively controlling the measurement process (e.g. sensor locations, vehicle 

trajectories), model uncertainty can be further reduced through the collection of higher 

quality data that maximizes information content. We extended the distributed CBBA 

framework to enable information-rich task allocation through the use of an information-

based task heuristic. The approach explicitly considered uncertainty reduction, by 

computing the Fisher Information associated with different vehicle trajectories and 

sensing locations, and selecting the task allocations that maximized information content. 

In joint work with Cornell University, we developed an algorithmic approach to integrate 

this distributed information-rich CBBA with an information-rich path planning algorithm 

and with the Cornell information fusion algorithms within a unified architecture  with the 

objective of reducing uncertainty in the target search and tracking process, while 

considering the complex constraints associated with realistic human-robot search and 

track missions. In this novel approach, the goal of maximizing information was a primary 

objective for each of the algorithms at every step, producing a cohesive framework that 

enabled intelligent and efficient cooperative search and track strategies that were 

balanced alongside other mission objectives. The resulting task allocation and trajectory 

planning algorithms were distributed, making the system scalable to large teams of 

operators and autonomous agents with diverse potential task sets. Furthermore, the 

information fusion algorithms provided strategies to directly include “soft" inputs from 

human agents, which were combined with conventional autonomous sensor information 

via robust particle filtering algorithms, enabling convenient recursive Bayesian updates 

for efficient replanning. This unified task allocation, trajectory planning and information 

fusion framework was validated through a set of real-time experiments at Cornell 

University, involving a human-robot team performing a multi-target search mission, 

demonstrating the viability of the approach 

 
S. S. Ponda, L. B. Johnson, A. Geramifard, and J. P. How, Handbook of Unmanned Aerial 

Vehicles, ch. Cooperative Mission Planning for Multi-UAV Teams. Springer, 2013. 
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12.4 Risk Allocation Strategies for Distributed Chance-Constrained Task 
Allocation 

 

The main objective of this project is to address the problem of real-time robust distributed 

planning for multi-agent networked teams operating in uncertain and dynamic 

environments.  An important issue associated with autonomous planning is that many of 

the algorithms rely on underlying system models and parameters, which are often subject 

to uncertainty. This uncertainty can result from many sources including: inaccurate 

modeling due to simplifications, assumptions, and / or parameter errors; fundamentally 

nondeterministic processes (e.g., sensor readings, stochastic dynamics); and dynamic 

local information changes.  As discrepancies between the planner models and the actual 

system dynamics increase, mission performance typically degrades.  The impact of these  

discrepancies on the overall quality of the plan is usually hard to quantify in advance due 

to nonlinear effects, coupling between tasks and agents, and interdependencies between 

system constraints (for example, if some tasks take longer than expected this can impact 

the arrival times of subsequent tasks).  However, if uncertainty models of planning 

parameters are available, they can be leveraged to create robust plans that explicitly 

hedge against the inherent uncertainty given allowable risk thresholds.  This research 

developed robust distributed task allocation strategies that can be used to plan for multi-

agent networked teams operating in stochastic and dynamic environments. In particular, 

the contributions of this work include: proposing risk allocation strategies that exploit 

domain knowledge of agent score distributions to improve team performance, providing 

insights about what stochastic parameters affect the allocations and the overall mission 

score/performance, and providing results showing improved performance over previously 

published heuristic techniques in environments with given allowable risk thresholds. 

We investigated numerous options for the score function, but of interest in this work is 

the chance-constrained stochastic metric, which provides probabilistic guarantees on 

achievable mission performance given allowable risk thresholds and is useful when low 

probability of mission failure is required.  

The distributed chance-constrained CBBA algorithm was implemented in simulation for 

time-critical UAV target tracking missions to validate the risk allocation algorithms.  

   

(a) Chance-constrained scores (b) Chance-constrained scores (log 

scale) 

(c) Achieved mission risk (log scale) 

Figure 18: Monte Carlo results for a stochastic mission with 6 homogeneous agents and 60 
tasks. 
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Typical results are shown in Figure 8, which displays Monte Carlo simulation results 

comparing chance-constrained mission performance for a homogeneous team.  The 

following 7 planning algorithms were compared: a deterministic algorithm (using mean 

values of parameters), an algorithm optimizing worst-case performance, the chance-

constrained CBBA algorithm without explicit risk allocation (all agents planned with 

mission risk, εi = ε, which is typically conservative), chance-constrained CBBA using the 

different homogeneous risk allocation strategies (Gaussian, Exponential and Gamma), 

and a centralized chance-constrained sequential greedy algorithm (SGA). The chance-

constrained mission scores as a function of mission risk are shown on a linear scale 

(Figure 8(a)) and a log scale (Figure 8(b)) to highlight performance at low risk levels. 

The 3 risk allocation strategies achieved higher performance than without risk allocation, 

with Exponential risk performing best on average. At low risk levels, Gaussian risk gave 

good performance but as the risk level increased the approximation became worse. All 

chance-constrained planning approaches performed significantly better than deterministic 

and worst-case planning which did not account for risk. Figure 8(c) shows the achieved 

team risk corresponding to the given agent risk allocations εi, where the dotted line 

represents a perfect match between desired and actual mission risk. Without risk 

allocation the team performs conservatively, achieving much lower mission risk than 

allowed, thus sacrificing performance. With the risk allocation methods, the team is able 

to more accurately predict the mission risk, where closer matches led to higher scores. 

Finally, chance-constrained CBBA achieved performance on par with the centralized 

sequential greedy approach, validating the distributed approximation. 

   

(a) Chance-constrained scores (b) Chance-constrained scores (log 

scale) 

(c) Achieved mission risk (log scale) 

Figure 19: Monte Carlo results for a stochastic mission with 6 heterogeneous agents and 60 
tasks. 

Figure 19 shows results for a heterogeneous stochastic mission where the following 8 

planning algorithms were compared: deterministic, worst-case, chance-constrained 

CBBA without risk allocation, chance-constrained CBBA using an initial risk allocation 

heuristic proposed with H = (2/Na)
½
, chance-constrained CBBA using the heterogeneous 

Gaussian risk allocation strategies (equal shares, shares based on variance, shares based 

on std. dev.), and the centralized SGA algorithm. All chance-constrained planning 

approaches did better than the deterministic and worst-case algorithms. The 

heterogeneous risk allocation strategy proposed in this paper, with shares proportional to 

std. dev., performed best overall. Our initial heuristic risk allocation achieved similar 

performance as well. The other risk allocation approaches performed rather poorly, even 

though in the equal share case the achieved team risk matched the desired risk well 
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(Figure (c)). The intuition behind these results is that when agent risk allocations were 

severely unequal, some agents developed very aggressive plans whereas others selected 

plans that were too conservative, without considering the effect on the mission as a 

whole. As a result, the achieved score distributions were quite different between agents, 

and the convolved mission score distribution yielded lower chance-constrained scores. In 

general, having a more equitable risk distribution for the team led to higher performing 

plans. Once again, the performance of CBBA was on par with the centralized approach, 

validating the distributed approximation. 

S. S. Ponda, L. B. Johnson, and J. P. How, “Distributed chance-constrained task allocation for 

autonomous multi-agent teams,” in American Control Conference (ACC), June 2012. 

 

13.  Modeling real-time human-automation collaborative scheduling of 
multiple UVs (Lead: MIT) 

A Collaborative Human-Automation Scheduling (CHAS) model was developed using 

System Dynamics modeling techniques. System Dynamics (SD) is a well-established 

field that draws inspiration from basic feedback control principles to create simulation 

models. SD constructs (stocks, flows, causal loops, time delays, feedback interactions) 

enable investigators to describe and potentially predict complex system performance, 

which would otherwise be impossible through analytical methods. Through a multi-stage 

validation process, the CHAS model was tested on three experimental data sets to build 

confidence in the accuracy and robustness of the model under different conditions. 

 

 
Figure 20: Comparison of real-time ratings of trust in the AS (1-7, low to high) throughout the mission 
between high and low performers. Standard error bars are shown. 

Next, the CHAS model was used to develop recommendations for system design and 

training changes to improve system performance. These changes were implemented and 

through an additional set of human subject experiments, the quantitative predictions of 

the CHAS model were validated. Specifically, test subjects who play computer and video 

games frequently were found to have a higher propensity to over-trust automation. By 

priming these gamers to lower their initial trust to a more appropriate level, system 
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Figure 21: Predictions using the CHAS model compared to experimental results for gamers. 

performance was improved by 10% as compared to gamers who were primed to have 

higher trust in the AS. The CHAS model provided accurate quantitative predictions of the 

impact of priming operator trust on system performance. Finally, the boundary 

conditions, limitations, and generalizability of the CHAS model for use with other real-

time human-automation collaborative scheduling systems were evaluated. 

Real-time scheduling in uncertain environments is crucial to a number of domains, 

especially UV operations. With the ever-increasing demand for UVs for both military and 

commercial purposes, inverting the operator-to-vehicle ratio will become necessary. 

Real-time scheduling for multiple UVs in uncertain environments will require the 

computational ability of optimization algorithms combined with the judgment and 

adaptability of human supervisors. Despite the potential advantages of human-automation 

collaboration, inappropriate levels of operator trust, high operator workload, and a lack of 

goal alignment between the operator and automation can cause lower system 

performance and costly or deadly errors. The CHAS model can support designers of 

future UV systems working to address these challenges by simulating the impact of 

changes in system design and operator training on human and system performance. This 

could help designers save time and money in the design process, enable the exploration 

of a wider trade space of system changes than is possible through prototyping or 

experimentation, and assist in the real-world implementation of multi-vehicle unmanned 

systems. 
 

A.S. Clare, J.C. Macbeth, and M.L. Cummings, Mixed-Initiative Strategies for Real-time 

Scheduling of Multiple Unmanned Vehicles, American Control Conference, Montreal, 

Canada, 2012. 

A.S. Clare and M.L. Cummings, Task-Based Interfaces for Decentralized Multiple Unmanned 

Vehicle Control, Proceedings of AUVSI 2011: Unmanned Systems North America, 

Washington D.C., August 2011. 
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13.1 Modeling Teamwork of Multi-Human Multi-Agent Teams UVs 

A human-in-the-loop experiment was conducted to investigate human-robot agent team 

structure as well as an agent supporting individual human team members’ attention 

allocation. 

 

USARSim, a robotic simulation performing Urban Search and Rescue (USAR) tasks, was 

used to provide the underlying simulation for the testbed, as shown in Figure 22. The 

human operators’ tasks were to work as a team of two to explore the unknown 

environment and identify as many positions of victims as possible.  

 

 
Figure 22: Interface for operating vehicles. 

The experiment had two independent variables: team structure and search guidance. 

Team structure had two levels: 

 Sector: each participant controlled 12 robots individually. 

 Shared Pool: the team shared the control of all 24 robots. 

Search Guidance had three levels: 

 Suggested: system provides a recommendation to switch to another robot when 

the operator spends thirty seconds on a robot.  

 Enforced: system provides a recommendation to switch at thirty seconds and 

switch automatically to another robot five seconds after the recommendation.  

 Off: system provides no recommendation. 

Dependent variables included task performance metrics, subjective workload, operator 

measures and communication time as team measure. Task performance includes number 

of victims found, number of errors, number of victims missed and number of deletes.  

 

Pool team structure resulted in lower workload ratings than Sector team structure, but 

there was no significant difference in task performance. Further analysis on individual 

workload and performance suggests that a workload balancing process or back-up 

behavior occurs in Pool teams. Pool teams also communicated more while Sector teams 

teleoperated more. Further analyses on communication revealed that communication time 

was moderately negatively correlated with errors (r=-0.309, p=0.008) for Pool teams, 
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suggesting that operators in Pool teams may correct each other facilitated by 

communication. 

Automated search guidance did not improve or decrease performance, but had an 

influence on working process. In Sector teams, Suggested search guidance helped 

operators mark victims faster when they appeared in the cameras as measured by mean 

display-to-mark time (p=0.024). 

 

A DES model was built based the data and observations from the human-in-the-loop 

experiment described in the previous section. Operators function as servers in the 

queuing model and serve the events generated from the robot agents. The overall 

framework of the model is shown in Figure 23(a).. Four aspects are modeled using DES: 

arrival process of agent-generated events, service process of human operators, task 

assignment in teams and communication. 

                

 
         

Figure 23: (a) Discrete Event Simulation Model for Multi-robot Multi-operator. (b) 
Comparison between DES Model and Experiment for Pool Teams with No Search Guidance. 

 

Selected publications:  

 
Fei Gao, Andrew S. Clare, Jamie C. Macbeth, M. L. Cummings, “Modeling the Impact of 

Operator Trust on Performance in Multiple Robot Control,” AAAI, 2013. 
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Fei Gao, M.L. Cummings, “Using Discrete Event Simulation to Model Multi-Robot Multi-

Operator Teamwork,” In Proceedings of the Human Factors and Ergonomics Society 

Annual Meeting, SAGE Publication, Vol. 56, No. 1, pp. 2093-209, Boston, MA, October, 

2012. 

Fei Gao, Missy L. Cummings, and Luca F. Bertuccelli, “Teamwork in controlling multiple 

robots,” In Proceedings of the seventh annual ACM/IEEE international conference on 

Human-Robot Interaction (HRI '12), ACM, New York, NY, USA, 81-8, 2012. 

DOI=10.1145/2157689.2157703 
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Personnel Supported 
8 faculty, 4 postdocs, 3 research staff, 17 graduate students, 2 undergraduates 

 
Degrees and degree type granted 
  

Prasanna Velagapudi, PhD in Robotics, August 2012. Thesis: ”Distributed Planning  

Under Uncertainty for Large Teams”, Carnegie Mellon University  

http://www.cs.cmu.edu/~softagents/theses/Velagapudi_PhD_Thesis_2012.pdf 

 

Steven Okamoto, PhD in Computer Science, August 2012. Thesis: “Allocating  

Virtual and Physical Flows for Multiagent Team in Mutable, Networked Environments”, 

Carnegie Mellon University  

http://www.cs.cmu.edu/~softagents/theses/Okamoto_PhD_Thesis_2012.pdf 

 

Huadong Wang PhD in Information Sciences, June 2013 Thesis “Asynchronous  

Visualization of Spatiotemporal Information for Multiple Moving Targets”,  

University of Pittsburgh 

http://d-scholarship.pitt.edu/19545/ 

 

Ewart de Visser, PhD, July 2012. Thesis: “the World is not Enough: 

Trust in Cognitive Agents”,   George Mason University 

http://www.cs.cmu.edu/~softagents/theses/GMU_deVisser_PhD_Thesis_2012.pdf   

 

Nisar Ahmed, PhD in Mechanical Engineering, January 2012, Cornell “Probabilistic 

Modeling and Estimation with Human Inputs in Semi-Autonomous Systems” 

http://ecommons.library.cornell.edu/handle/1813/29445  

Also at: http://www.cs.cmu.edu/~softagents/theses/Cornell_Ahmed_PhD_Thesis_2012.pdf 

 

Danelle Shah, PhD in Mechanical Engineering, January 2012, Cornell “Towards Natural 

and Robust Human-Robot Interaction Using Sketch and Speech” 

http://ecommons.library.cornell.edu/handle/1813/29272 

Also at: http://www.cs.cmu.edu/~softagents/theses/Cornell_Shah_PhD_Thesis_2012.pdf 

 

Andrew Clare,  PhD in Aeronautical Engineering, June 2013. “Modeling real time 

Human Automation Collaborative Scheduling of Unmanned Vehicles”  MIT 

http://web.mit.edu/aeroastro/labs/halab/papers/Clare_Doctoral_Thesis.pdf . 

 

Sameera Ponda, PhD in Aeronautical Engineering,  September 2012 Thesis:  “Robust 

Distributed Planning Strategies for Autonomous Multi-Agent Teams", MIT 

http://acl.mit.edu/papers/Ponda_PhD_Thesis_Final.pdf.  

 

Nathan Brooks MS in Robotics August 2011 Thesis:”Scalable Target Detection for Large 

Robot Teams”  Carnegie Mellon University. 

http://www.cs.cmu.edu/~softagents/theses/Brooks_MS_thesis_2011.pdf 
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Bruno Hexsel, MS in Robotics, December 2010 Thesis “Coverage Control for Mobile 

Anisotropic Sensor Networsk” CMU 

 http://www.cs.cmu.edu/~softagents/theses/Hexsel_MS_thesis_2010.pdf 

 

Siddharth Mehrotra MS in Robotics December 2010 Thesis “Effects of Robot Self-

Reflection on Operator Control of Robot Teams”, CMU 

http://www.cs.cmu.edu/~softagents/theses/Mehrotra_MS_thesis_2010.pdf 

 

Breelyn Kane MS in Robotics January 2010 Thesis “The Operator, a Valuable Resource: 

Asking for Help Through Adaptive Autonomy”,  CMU 

http://www.cs.cmu.edu/~softagents/theses/Kane_MS_thesis_2010.pdf 

 
Lingzhi Luo, MS in Robotics May  2012 Thesis “Distributed Algorithms for Constrainted Multi-

Robot Dynamic Task Assignment with Formal Performance Guarantees” , CMU   

http://www.cs.cmu.edu/~softagents/theses/Luo_MS_Thesis_2012.pdf 

 

 

Honors/Awards 

 

Philip Walker, Steven Nunnally, Nilanjan Chakraborty, Michael Lewis, Katia Sycara, 

“Levels of Automation for Human Influence of Robot Swarms”, HFES, , San Diego, September 

30-October 4 2013. (Best Paper Award) 

 

Katia Sycara: Co-recipient (second time in a row) of the Semantic Web Scientific 

Association most influential 10-year paper award, for the paper titled "Semantic Matching 

of Web Services Capabilities.". The award was presented at the 11
th
 International Semantic Web 

Conference (ISWC), Boston, USA, November 11-15, 2012. 
 

Katia Sycara: Co-recipient of the Semantic Web Scientific Association most influential 

10-year paper award, for the paper titled "DAML-S: Semantic Markup for Web 

Services". The award got presented at the 10
th

 International Semantic Web Conference 

(ISWC), Bonn, Germany, October 23-27, 2011. 

 

Ryan McKendrick (October 2011): Best Student Paper Award for paper “Team 

performance and communication within networked supervisory control human-machine 

systems.”  Cognitive Engineering and Decision Making Technical Group. Human Factors 

and Ergonomics Society 

 

Raja Parasuraman (October 2011): Pioneer in Human-Automation Research Award, 

Cognitive Engineering and Decision Making Technical Group, Human Factors and 

Ergonomics Society. 

 

Raja Parasuraman (February 2012): Outstanding Educator Award, International 

Ergonomics Association Triennial Award 

 

Best paper award at the AIAA Guidance, Navigation and Control Conference, 2011.  
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Interactions (eg presentations at Dod meetings, keynote talks, panels, 
seminars etc) 
 

Katia Sycara (Keynote Talk) “Scalable Strategies of Human Control for Multi Robot 

Systems”, The 16
th

 World Scientific and Engineering Academy and Society on 

Computers, Kos, Greece, July 14-14, 2012. 

 

Katia Sycara (Keynote Talk)  “Network Dynamics of Information Propagation” 5
th

 

International Symposium on Intelligent Distributed Computing, Delft, the Netherlands, 

October 5-7, 2011. 

Missy Cummings gave an invited presentation at the The U.S. Air Force Tactical Mission 

Battlespace Integration workshop, Alexandria, VA, May 2011 

Missy Cummings briefed The Office of the Secretary of Defense, Washington DC in 

December 2010. 

Missy Cummings was the keynote speaker for the 2011 Naturalistic Decision Making 

conference JUN 2011 

Missy Cummings gave presentations for Codes 34 & 35 (JUN 2011 and APR 2011 

respectively). 

Raja Parasuraman made presentations at the Human Effectiveness Directorate, Air  

Force Research Laboratory, Wright Patterson Air Force Base in 2011 and 2012. 

 
Mark Campbell gave an Invited Talk, National Academy of Science Chinese-American Kavli 

Frontiers of Science Symposium, Shenzhen, China, Nov 2011. 

 

Mark Campbell Plenary Talk, NSF-ARO Frontiers of Real-World Multi-Robot Systems: 

Challenges and Opportunities, 10 Oct 2011. 

 

Mark Campbell gave a Plenary Talk, NSF-ARO Frontiers of Real-World Multi-Robot 

Systems: Challenges and Opportunities 

 

David Reitter attended BRIMS-2012 (sponsored by ARL) in Florida in March 2012, 

including a workgroup with Capt Dylan Schmorrow, Deputy Director, Human 

Performance, Training and BioSystems at the Office of the Secretary of Defense.   
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Christian Lebiere gave an invited talk at the University of Indiana School of Public and 

Environmental Affairs in May 2012 on the topic of “Cognitive Architectures for Social 

Decision Making” emphasizing our multi-agent modeling approach. 

 

Christian Lebiere presented a presentation titled “Introduction to ACT-R Cognitive 

Architecture for Robotics” at an ONR-sponsored workshop on Architectures for 

Autonomy in July 2012.in Arlington, VA. 
 

 

Consultative and advisory functions at other laboratories and agencies, 
especially Air Force and Other DoD laboratories.  
 

Michael Lewis: Invited Participant in Human-Centered Autonomy Workshop at 

WPAFB.   He was member of the group reporting on research needs for Human Robotics 

Interface, September 13-14, 2011. 

 

Michael Lewis was an invited Participant in HFM-217 NATO Workshop on Supervisory 

Control of Multiple Uninhabited Systems - Methodologies and Human-Robot Interface 

Technologies , Prague,  Czech Republic, May 8-10 2012. 

 

Raja Parasuraman was invited to Chair the Panel on Sensing, Air Force sponsored 

Workshop on Human Performance Augmentation, Arizona State University, Tempe, AZ, 

2012. 

 

Parasuraman: Human Effectiveness Directorate, Air Force Research Laboratory, Wright 

Patterson Air Force Base, Dayton, OH. Collaborative research on multi-UAV supervisory 

control, adaptive automation, and neuroergonomics. 

 

Parasuraman: United States Military Academy, West Point, NY. Collaborative research 

on field study of individual differences in human performance, with West Point Marine 

cadets.  

 

Parasuraman was consulted by Air Force Research Laboratory, Human Effectiveness 

Directorate on issues related to multi-UAV control, adaptive automation, and 

neuroergonomics. 

 

Lebiere gave input at a workshop on a tri-service modeling competition organized by 

Research Psychologist Kevin Gluck from AFRL Dayton, held at Aberdeen Proving 

Ground, and submitted a whitepaper about topics and challenges for future competitions. 

 

Interactions/Transitions: 
 

The CMU multi-robot planning POMDP algorithm is being transitioned to an ONR 

HSBC program in a project called “Enhanced COA Analysis by Integration of  Decision 

and Social Influence Modeling with MultiAgent System Technology (CADSIM)” in 

cooperation with a small government contractor.  The algorithms will form the basis of a 

war-gaming and contingency planning system. 
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The CMU multi-robot path planning POMDP algorithm is also being brought into an 

AFOSR SBIR program as a planning service for operators controlling multiple UAVs.  

 

The CMU information sharing algorithms for large scale networks are being adapted, in 

part, into an Army SBIR for extracting information from very large databases and the 

web and automatically constructing networks of interactions between people, places and 

organizations. 

 

The CMU ACT-UP cognitive modeling toolbox is available online for download at: 

 

http://act-up.psy.cmu.edu/ACT-UP.html  

https://cc.ist.psu.edu/act-up/ 

 

To facilitate its adoption by the cognitive modeling community, supporting materials 

such as tutorial examples, documentation, and mailing list are also provided. 

 

 

Patent disclosures: 
--None 
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Appendix A: ACT-UP Documentation 

Overview 

ACT-UP is a cognitive modeling library that allows modelers to specify their model's 
functionality in Common Lisp. Whenever a cognitive explanation in a particular part of 
the model is sought, the modeler uses the library to provide characteristics of 

 explicit, declarative learning and cue- and similarity-based retrieval, and 

 procedural skill acquisition [not yet available] 

following the ACT-R 6 theory. 

As in the ACT-R 6 implementation, modelers are free to adhere more or less to the 
theoretical limitations. However, ACT-UP's design encourages modelers to underspecify 
portions of the model's functionality that do not contribute to the model's explanations 
and predictions of human performance. 

How do I... 

... load the library? 

Just load the file load-act-up.lisp: The easiest way is to store the ACT-UP directory 
somewhere on your hard drive and then hard-code the path: 

(load "/Users/me/modeling/ACT-UP/load-act-up.lisp") 

Windows users, beware: backslashes need to be doubled in Lisp strings; forward slashes 

should work fine. 

A more sophisticated solution uses a path relative to the model file. Assuming our 
model file is ACT-UP/tutorials/model.lisp, do this: 

(load (concatenate 'string (directory-namestring *load-

truename*) "../load-act-up.lisp")) 

Here, we adjust its path so that it is relative to the current file (rather than the directory 
that happens to be current when Lisp is started or when the model file is loaded). 

... define a chunk type? 

Unlike ACT-R, ACT-UP is not normally strongly typed. All slot names are declared initially, 
but ACT-UP does not distinguish chunk types within a type hierarchy. Chunk types are 



73 

 

lisp structure types that inherit from the type actup-chunk. This type exists once the 
`define-slots' macro is called: 

(define-slots name dampen success) 

If you do want to define a type hierarchy, ACT-UP provides the necessary macros. For example, 

the following structure defines a chunk type of name strategy with four slots. One of these slots is 

assigned a default value (strategy). 

(define-chunk-type strategy 

  (type 'a-strategy) 

  name 

  dampen 

  success) 

Note that the type member is not required by ACT-UP. 

To define an inherited type, use this construction: 

(define-chunk-type (lazy-strategy :include strategy) 

...define a new model? 

The model is defined automatically when act-up.lisp is loaded. To reset the model, use 
the reset-model function. To create a new model (multiple models may be used in 
parallel), use make-model. Use the function set-current-actUP-model to define the 
current model. 

The ACT-UP meta-process keeps track of model time that is common to all models. You 
may define several meta-processes and use/reuse them as you like with the 
function make-meta-process. You can bind *current-actUP-meta-process* to a meta-
process to switch. Use reset-mp to discard and reset the current meta-process. 

... define a procedural rule ("production")? 

ACT-UP does not use IF-THEN production rules as known from ACT-R. Instead, it allows 
you define Lisp functions that we call procedures; they represent multiple, theoretical 
ACT-R productions. An important property of ACT-UP models is that the procedures are 
not always tested in parallel; flow control is achieved through standard Lisp 
programming. Define procedures using defproc, similar to the way you would define a 
Lisp function with the `defun' macro: 

(defproc subtract-digit (minuend subtrahend) 

   "Perform subtraction of a single digit" 

   (- minuend subtrahend)) 
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...define a chunk? 

Chunks are Lisp structures that are of type `chunk', or of a type defined with `define-
chunk-type'. They can be created with the `make-chunk' function, or with the creator 
functions of the more specific type. 

When a chunk is created, a unique name should be assigned. Otherwise, this name is 
assigned automatically when the chunk is added to the DM. 

(make-chunk :name 'andrew :age 42 :spouse 'louise) 

(make-chunk :name 'louise :age 35 :spouse 'andrew) 

When assigning values to the attributes defining a chunk, symbols are interpreted as 
names of other chunks in DM. This is often more comfortable than assigning the values 
directly. 

Note, however, that certain actions - such as defining Sji weights between chunks - will 
cause ACT-UP to implicitly define an empty chunk of a given name in the DM, if that 
chunk is not found in DM. 

...commit a chunk to memory or reinforce it? 

To specify the "presentation" of a specific chunk, use the function learn. The chunk 
reference may be supplied in a normal variable (equivalent to ACT-R's buffer), or the 
chunk may be produced right there and then using the make-chunkfunction, as in the 
following example: 

(learn-chunk  (make-chunk :name 'guess :success 0.2)) 

This will create a new strategy chunk, setting two of its parameters, and commit it to memory. To 

reinforce the existing chunk, use the chunk's name: 

(learn-chunk 'guess) 

Note that making a new chunk and calling `learn-chunk' will always create a separate chunk. It 

will not merge the new chunk with any existing chunk (this would not scale very well, 

computationally). You must use the unique chunk name, or retrieve the chunk before committing 

it, or use the `make-chunk*' syntax to extract a chunk from declarative memory for learning. For 

example: 

(learn-chunk (make-chunk :success 0.2))   [1] 

(learn-chunk (make-chunk* :success 0.2))  [2] 

Case 1 would make a new chunk with the given success value, give it a unique name, and add it 

to declarative memory. Case 2, on the other hand, would find the chunk that is already in 

declarative memory, and boost its presentation count via base-level learning. 
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... retrieve an item from declarative memory? 

Simply use the high-level functions retrieve-chunk, or blend-retrieve-chunk (for 
blending). The following example retrieves the most active chunk that has the 
name guess . The chunk contained in the variable valve-open-chunk spreads activation. 
No partial matching is used: 

(retrieve-chunk '(:name guess)) 

            :cues (list valve-open-chunk)) 

Several low-level functions are provided as well. filter-chunks produces a list of all 
chunks that match a given set of criteria. In the example below, we are looking for a 
chunk with the name attribute guess. 

The best-chunk function does the actual (time-consuming and noisy) retrieval: it selects 
the best chunk out of the (filtered) list of chunks, given additional retrieval cues that 
spread activation and, if so desired, a set of filter specifications for partial matching. In 
this example, we use an existing chunk stored in the valve-open-chunk variable as a 
single retrieval cue, and no partial matching: 

(best-chunk (filter-chunks  

                 (model-chunks (current-actUP-model)) 

                 '(:name guess)) 

            (list valve-open-chunk)  

            nil) 

... debug an ACT-UP model? ("production")? 

We're providing a separate tutorial on debugging ACT-UP models. 

... retrieve a blended chunk? 

Use the high-level function blend-retrieve-chunk . 

When combining low-level functions, use the function blend instead of retrieve-chunk. 
In addition to the cues and partial-matching specification known from retrieve-chunk, it 
also expects a chunk type (such as strategy), which determines the kind of chunk 
created as a result of blending. 

... define chunk similarities? 

Use the add-sji-fct and reset-sji-fct' functions. 
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... select a procedure (in lieu of a production rule) using subsymbolic utility learning? 

Quick Answer 

Define competing procedures as above and give each a :group attribute in order to group 
them into a competition set: 

(defproc  force-over () 

  :group choose-strategy 

  ...) 

(defproc force-under () 

  :group choose-strategy 

  ...) 

Then, invoke one of the procedures (as chosen by utility) as such: 

(choose-strategy) 

Arguments may be used as well (but ensure that all procedures accept the same 
arguments). 

Utilities are learned using the function assign-reward: 

(assign-reward 1.5) 

This example distributes a reward of across the recently invoked procedures. 
Procedures do not have to have a :group attribute and they do not have to have been 
invoked via the group name in order to receive a reward; however, they have to have 
been defined using the defproc macro (rather than just being Lisp functions). 

Configure utility learning via the parameters *au-rpps*, *au-rfr*, *alpha*, and *iu*. 

Worked Example 
Note that ACT-UP supports utility learning and even procedure compilation. Utility learning 

means that multiple procedures may compete for execution, and that the actually executed 

procedures are assigned rewards if they lead to some form of success. To define competing 

procedures, they must be grouped together in a Group. A group is a set of procedures, such as the 

following: 

(defproc subtract-digit-by-addition (minuend subtrahend) 

   :group subtract 

   "Perform subtraction of a single digit via addition." 

   (let ((chunk (retrieve-chunk `(:chunk-type addition-fact 

                                  :result ,minuend 

                                  :add1 ,subtrahend)))) 

       (when chunk 

          (learn-chunk chunk) 

          (addition-fact-add2 chunk)))) 

(defproc subtract-digit-by-subtraction (minuend subtrahend) 
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   :group subtract 

   "Perform subtraction of a single digit via subtraction knowledge." 

   (let ((chunk (retrieve-chunk `(:chunk-type addition-fact 

                                  :min ,minuend 

                                  :sub subtrahend)))) 

       (print "addition by subtraction.") 

       (when chunk 

          (learn-chunk chunk) 

          (subtraction-fact-result chunk)))) 

(defproc subtract-digit-by-addition-faulty (minuend subtrahend) 

   :group subtract 

   "Perform subtraction of a single digit via addition.  Faulty 

strategy." 

   (let ((chunk (retrieve-chunk `(:chunk-type addition-fact 

                                  :add2 ,minuend 

                                  :result ,subtrahend)))) 

       (when chunk 

          (learn-chunk chunk) 

          (addition-fact-add2 chunk)))) 

(defproc subtract-digit-by-decrement (minuend subtrahend) 

   :group subtract 

   "Perform subtraction of a single digit via subtraction knowledge." 

   ...) 

Note that each procedure in the group takes the same, two arguments (minuend, subtrahend). In 

order to execute a subtraction, we simply call a function that is named after the group: 

 
(subtract 7 3) 

 
ACT-UP will automatically choose one of procedures in the subtract group. In order to gauge the 

utility of each group, we must propagate rewards to the procedures. This can be done with the 

`assign-reward' function: 

(defproc subtraction-model (a b) 

  (let ((result (subtract a b))) 

     ;; obtain feedback from experimental environment: 

     (if (get-feedback a b result) 

         (assign-reward 2.0)))) 

 

;; environment: 

(defun get-feedback (a b result) 

  "Environment function (experimental setup) - not part of the model. 

Return T if problem solved correctly." 

  (if result  ;; note result may be nil 

      (= result (- a b)))) 

After a short period of time, this model should learn to choose an effective, reliable strategy to 

carry out a subtraction. 

Rewards are assigned to ACT-UP procedures just like they would be assigned to 
production procedures in ACT-R. The most recently invoked procedure received the 
largest portion of the reward; Difference-Learning governs how much of a procedure 
benefits from its reward portion. 
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...model effects via production compilation? 
ACT-UP may not have productions, but it does have procedures. These procedures can be 

compiled. To do so, we need to keep in mind that procedure compilation will side-step any 

intemediate action that a model might undertake in order to execute a procedure. This includes 

retrievals from declarative memory, but also any other side-effects such as sensory-motor 

interaction, or even Lisp code. 

ACT-UP's procedure compilation can be enabled by setting the *procedure-

compilation* parameter to t. 

Every time a procedure ("source procedure") is invoked, procedure compilation will 
create a compiled procedure (specific to the arguments given to the procedure at 
invokation); its initial utility will we *iu*. If the source procedure is compiled a second 
time, the utility of the compiled procedure will be boosted by the utility of the source 
procedure according to reward assignment mechanism (difference learning equation, as 
above). The compiled procedure will, eventually, have a higher utility than the source 
procedure, and it will be executed instead. In the subtraction example from above, the 
following gives a sample of the acquired compiled procedures: 

(subtract-digit-by-subtraction 8 3) --> 5 (subtract-digit-by-addition 6 

2) --> 4 (subtract-digit-by-addition-faulty 7 3) --> nil (subtraction-

model 3 1) --> 2  

Note that in order to execute the best procedure among one or more source 
procedures, and all their compiled equivalents, the modeler must define a group for the 
procedures and invoke them via the group name. Reward assignment and procedure 
compilation will take place no matter how the procedure was invoked. So, in the above 
example, the `subtraction-model' will never be run in its compiled form, and rewards 
will always be propagated, because it does not belong to a group and cannot be called 
that way. 

Again, note that in its compiled form, the procedure merely returns its result. No side-
effects are observed. For instance, the `subtract-digit-by-subtraction' procedure will 
print the debug message "Addition by subtraction!" every time it is run - as long as it 
isn't compiled. Once compiled, it will always just return the result. 

... run model code in parallel? 

ACT-UP is designed assuming that most modeled processes can be formulated as a 
sequence of cognitive actions. However, in some situations, parallelism may be 
necessary. 

To asynchronously request the execution of some code (that is, without waiting for the 
results), use the `request-' syntax, e.g., request-retrieve-chunk. The request- functions 
are defined for each module-specific ACT-UP function that can take some time, 
e.g., best-chunk, filter-chunks, retrieve-chunk (for the declarative memory module), and 



79 

 

all functions defined with `defproc' (for the procedural module). The functions all return 
an execution handle. 

This function kicks off task execution in parallel; it returns without delay (in ACT-UP 
time). Once the result of the operation is needed, it may be retrieved using the `receive' 
function and the previously obtained handle. 

(let ((handle (request-retrieve-chunk '(:chunk-type ...))))  

;; do something else  

...  

(receive handle)) 

 
Different threads of execution may share resources. We follow Anderson et al. (2004) in that each 

module can only handle one request at a time. We follow some of Salvucci&Taatgen's 

(2008) threaded cognition approach: threads acquire resources in a "greedy" and "polite" manner. 

When a `request-' function is called, it will wait until the module is available, but then reserve the 

module regardless of other goals that may exist. The module functions (such as `retrieve-chunk') 

will also wait for the module to be free. Similarly, `receive' will wait. To check if the result is 

available, use the `response-available-p' function. 

Example 
The following example shows how a retrieval request is initiated and finished. Upon initiating the 

request, ACT-UP does not "wait" for the retrieval to finish. 

 
(print (actup-time)) 

(let ((retrieval-process (request-retrieve-chunk '(:chunk-

type person)))) 

  (print (actup-time)) ;; no time has elapsed 

  (print (response-available-p retrieval-process))  ;; module is busy 

  (pass-time 0.05) ;; let's spend some time 

  (print (response-available-p retrieval-process)) ;; module is still 

busy 

  ;; (wait-for-response retrieval-process)   ;; wait for result - not 

needed 

  ;; (print (response-available-p retrieval-process)) 

  (print (actup-time)) ;; this takes some time! 

  (print (receive retrieval-process))) ;; waits and receives 

More related functions 

ACT-UP provides a `reset-module' function to explicitly cancel a module's operation. To 
wait for a module to finish processing when the handle is not known, use `wait-for-
module'. 
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Appendix B: ACT-UP Package API 
 

*act-up-version*   variable 

Version of a loaded ACT-UP. ACT-UP has been correctly initialized if this is defined and non-

nil. 

Initial value: "27bc8ed" 

*all*   variable 

Constant for *debug*: Show all messages (maximum detail). 

Initial value: 1000 

*alpha*   variable 

Utility learning rate. See also the function assign-reward. See also: ACT-R parameter :alpha 

Initial value: 0.2 

*ans*   variable 

Transient noise parameter for declarative memory. See also: ACT-R parameter :ans 

Initial value: 0.2 

*associative-learning*   variable 

The trigger for associative learning, a in ROM Equation 4.5. 

   Can be any non-negative value. 
Initial value: NIL 

*au-rfr*   variable 

base reward proportion for each procedure e.g., the each procedure before the reward trigger gets 

10% of the reward. Set to nil (default) to use the ACT-R discounting by time in seconds. See also 

the parameter *au-rpps* and the function assign-reward. 

Initial value: NIL 

*au-rpps*   variable 

Reward proportion per second elapsed. e.g., after 10 seconds we want to assign 50% of the 

remaining reward: 0.5/10 = 0.05 time is in between procedures. Set to nil (default) to use the 

ACT-R discounting by time in seconds. See also the parameter *au-rfr* and the function assign-

reward. 

Initial value: NIL 

*blc*   variable 
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Base-level constant parameter for declarative memory. See also: ACT-R parameter :blc 

Initial value: 0.0 

*bll*   variable 

Base-level learning decay parameter for declarative memory. See also: ACT-R parameter :bll 

Initial value: 0.5 

*critical*   variable 

Constant for *debug*: Show only critical messages. 

Initial value: 0 

*current-actup-meta-process*   variable 

The current ACT-UP meta-process. The meta process keeps track of simulation time. May be 

read and manipulated by setting it to a different instance of type meta-process. 

Initial value: #S(META-PROCESS :ACTUP-TIME 0.0D0 :NAME NIL) 

*dat*   variable 

Default time that it takes to execut an ACT-UP procedure in seconds. See also: ACT-R 

parameter :dat [which pertains to ACT-R productions] 

Initial value: 0.05D0 

*debug*   variable 

Level of debug output currently in effect. The following constants may be used: *critical* 

*warning* *informational* *all* The parameter *debug-to-log* is helpful in logging debug 

messages to a file. 

Initial value: 10 

*debug-to-log*   variable 

Enable off-screen logging of debug output. If t, ACT-UP logs all debug messages not to standard 

output, but to a buffer that can be read with debug-log and cleared with debug-clear. If a stream, 

ACT-UP logs to the stream. 

Initial value: NIL 

*declarative-finst-span*   variable 

Declarative Finst time span The maximum time period during whichg a finst marks a chunk as 

recently retrieved. Chunks retrieved longer ago are not considered 'recently retrieved'. Time in 

seconds, defaults to 3.0. See ACT-R parameter :declarative-finst-span 

Initial value: 3.0 

*declarative-num-finsts*   variable 
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Number of Declarative Finsts The maximum number of chunks considered recently retrieved. 

Defaults to 4. See ACT-R parameter :declarative-num-finsts 

Initial value: 4 

*detailed*   variable 

Constant for *debug*: Show detailed log output . 

Initial value: 300 

*egs*   variable 

Transient noise parameter for ACT-UP procedures. This is the expected gain s parameter. It 

specifies the s parameter for the noise added to the utility values. It defaults to 0 which means 

there is no noise in utilities. See also: ACT-R parameter :egs 

Initial value: NIL 

*informational*   variable 

Constant for *debug*: Show informational and more important messages. 

Initial value: 100 

*iu*   variable 

Initial procedure utility. The initial utility value for a user-defined procedure (defproc). This is the 

U(0) value for a production if utility learning is enabled and the default utility if learning (*ul*) is 

not enabled. The default value is 0. See also the function assign-reward. See also: ACT-R 

parameter :iu 

Initial value: 0.0 

*le*   variable 

Latency Exponent parameter for declarative retrieval time calculation. See ACT-R parameter :le 

Initial value: 1.0 

*lf*   variable 

Latency Factor parameter for declarative retrieval time calculation. See ACT-R parameter :lf 

Initial value: 1.0 

*maximum-associative-strength*   variable 

Maximum associative strength parameter for Declarative Memory. *mas* is defined as alias 

for maximum-associative-strength. See also *associative-learning*, reset-sji-fct. See also: ACT-R 

parameter :mas. 

Initial value: 1.0 

*md*   variable 
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ACT-UP Partial Match Maximum Difference Similarity penalty assigned when chunks are 

different and no explicit similarity is set. Value in activation (log) space. 

Initial value: -1 

*mp*   variable 

ACT-UP Partial Match Scaling parameter Mismatch (set-similarities-fct) is linearly scaled using 

this coefficient. 

Initial value: 1.0 

*ms*   variable 

ACT-UP Partial Match Maximum Similarity Similarity penalty assigned when chunks are equal. 

Value in activation (log) space. 

Initial value: 0 

*nu*   variable 

Utility assigned to compiled procedures. This is the starting utility for a newly learned procedure 

(those created by the production compilation mechanism). This is the U(0) value for such a 

procedure if utility learning is enabled and the default utility if learning is not enabled. The 

default value is 0. See also the function assign-reward and the variable *procedure-compilation*. 

See also: ACT-R parameter :nu 

Initial value: 0.0 

*ol*   variable 

Optimized Learning parameter for base-level learning in Declarative Memory. OL is always on in 

ACT-UP. See also: ACT-R parameter :ol 

Initial value: 3 

*pas*   variable 

Permanent noise parameter for declarative memory. See also: ACT-R parameter :pas 

Initial value: NIL 

*procedure-compilation*   variable 

If non-nil, procedure compilation is enabled. Procedure compilation causes ACT-UP procedures 

defined with defproc to be compiled (or: cached). After execution of a source procedure, name, 

execution arguments and the result are stored as compiled procedure. The compiled procedure is 

added to each of the source procedure's groups. When the group is executed, compiled procedures 

compete for execution with the other procedures in the group. (The procedure with the highest 

utility is chosen.) The initial utility of a compiled procedure equals the initial utility of the source 

procedure. When a source procedure is compiled multiple times, the utility of the compiled 

procedure is updated by assigning the source procedure utility as reward to the compiled 

procedure (according to the ACT-R difference learning equation). See also assign-reward for 

reward assignment to regular procedures. *epl* is defined as alias for *procedure-compilation*. 
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Initial value: NIL 

*rt*   variable 

Retrieval Threshold parameter for declarative memory. Chunks with activation lower 

than *rt* are not retrieved. See also: ACT-R parameter :rt 

Initial value: 0.0 

*ul*   variable 

Utility learning flag. If this is set to t, then the utility learning equation used above will be used to 

learn the utilities as the model runs. If it is set to nil then the explicitly set utility values for the 

procedures are used (though the noise will still be added if *egs* is non-zero). The default value 

is nil. See also the function assign-reward. Only if assign-reward is called will this parameter 

have any effect. See also: ACT-R parameter :ul 

Initial value: T 

*ut*   variable 

Utility threshold. This is the utility threshold. If it is set to a number then that is the minimum 

utility value that a procedure must have to compete in conflict resolution. Procedures with a lower 

utility value than that will not be selected. The default value is nil which means that there is no 

threshold value and all procedures will be considered. See also: ACT-R parameter :ut 

Initial value: NIL 

*warning*   variable 

Constant for *debug*: Show warnings and more important messages. 

Initial value: 10 

actup-chunk   structure 

Type defining an ACT-UP chunk. Derive your own chunks using this as a base structure by 

using define-chunk. 

(actup-time &optional meta-process)   function 

Returns the current runtime. An optional parameter META-PROCESS specifies the meta-process 

to use. It defaults to the current meta-process. 

(add-chunk-to-dm chunk first-presentation-time recent-presentation-times number-of-
presentations)   function 

Add CHUNK to declarative memory of current model. FIRST-PRESENTATION-TIME indicates 

the time of first presentation of the chunk (see also actup-time). RECENT-PRESENTATION-

TIMES is a list of the *ol* or less most recent presentation times. NUMBER-OF-

PRESENTATIONS indicates the total number of presentation, including the first one. 
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(add-sji-fct list)   function 

Set Sji link weights between chunks. LIST is a list with elements of form (CJ NI S), where CJ 

und NI are chunks or chunk names, and S is the new link weight, regulating spreading activation 

when CJ is in context as a cue and NI is retrieved. S may also be a list of form (FCN TIME), with 

FCN indicating frequency of CJ and NI occurring together, and TIME indicating the point in time 

of their last joint occurrence (TIME is unused currently, but must be given.) 

(assign-reward reward)   function 

Assign reward to recently invoked procedures. Distributes reward value REWARD across the 

recently invoked procedures. See parameters *au-rpps*, *au-rfr*, *alpha*, and *iu*. 

See defproc for documentation on how to use utility when selecting between procedures. Reward 

must be greater than 0. The reward is only distributed to procedures invoked since the last call 

to assign-reward (or flush-procedure-queue, or reset-model). See also assign-reward* for a 

function that does not reset this set of procedures. 

(assign-reward* reward)   function 

Like assign-reward, but does not flush the procedure queue. Only reward portions >0 are assigned 

to procedures, i.e., if *au-rfr* or *au-rpps* are nil (ACT-R 6 reward propagation), rewards are 

only assigned to procedures up toreward seconds back in time. See also flush-procedure-queue. 

(best-chunk confusion-set &key cues soft-spec timeout inhibit-cues)   function 

Retrieves the best chunk in confusion set. CONFUSION-SET is a list of chunks, out of which the 

chunk is returned. CUES is a list of cues that spread activation. CUES may contain chunk objects 

or names of chunks. SOFT-SPEC: request specification for partial matching (see also retrieve-

chunk). INHIBIT-CUES: do not use (yet). Simulates timing behavior with pass-time. Marks the 

chunk as recently retrieved (declarative finst). Note that this function extends beyond the power 

of ACT-R's declarative module. See also the higher-level function retrieve-chunk. 

(blend chunks &key cues chunk-type retrieval-spec)   function 

Return a blended variant of chunks. Activation is calculated using spreading activation from 

CUES. CUES may contain chunk objects or names of chunks. The returned chunk is of type 

CHUNK-TYPE; all CHUNKS must be of type CHUNK-TYPE or of a supertype thereof. If 

CHUNK-TYPE is not given, all CHUNKS must be of the same class and the returned type will 

be this class. RETRIEVAL-SPEC should contain the retrieval filter used to obtain CHUNKS; 

attribute-value pairs in it will be included in the returned chunk as-is and not be blended from the 

CHUNKS. See also the higher-level function blend-retrieve-chunk. 

(blend-retrieve-chunk spec &key cues soft-spec recently-retrieved)   function 

Retrieve a blended chunk from declarative memory. The blended chunk is a new chunk 

represeting the chunks retrievable from declarative memory under specification SPEC. The 

contents of the blended chunk consist of a weighted average of the retrievable chunks, whereas 

each chunk is weighted according to its activation. CUES is, if given, a list of chunks that spread 

activation to facilitate the retrieval of target chunks. CUES may contain chunk objects or names 
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of chunks. SOFT-SPEC is, if given, a retrieval specification whose constraints are soft; partial 

matching is used for this portion of the retrieval specification. SPEC and SOFT-SPEC are lists of 

the form (:slot1 value1 :slot2 value2 ...), or (slot1 value1 slot2 value2). 

(chunk-name chunk)   function 

The unique name of CHUNK. The returned value is a symbol assigned as unique name of 

CHUNK in the current model. 

(current-model)   function 

Evaluates to the currently active ACT-UP model. 

(debug-clear)   function 

Clear the ACT-UP debug log buffer. 

(debug-detail &body body)   function 

Evaluates BODY while outputting ACT-UP debug information. 

(debug-detail* &body body)   function 

Evaluates BODY while logging ACT-UP debug information. The log output can be retrieved 

with debug-log. 

(debug-grep keyword &body body)   function 

Evaluates BODY while outputting ACT-UP debug information. 

(debug-log)   function 

Returns logged ACT-R output. If *debug-to-log* is set to t, the ACT-UP debug log may be 

retrieved using this function. 

(define-chunk-type type &rest members)   function 

Define a chunk type of name TYPE. MEMBERS should contain all possible elements of the 

chunk type. TYPE may be a symbol or a list of form (name2 :include parent-type), whereas 

PARENT-TYPE refers to another defined chunk type whose elements will be inherited. 

MEMBERS may be a list of symbols, or also a list of member specifiers as used with the 

lisp defstruct macro, which see. 

   
Chunks make be created by invoking the make-TYPE function, whereas TYPE stands for the 

name of the chunk type as defined with this macro. An attribute called :name should be included 

to specify the unique name of the chunk (the name may not be used for any other chunk in the 

model). Chunk contents must not be changed after a chunk has been created. An additional 

function of name make-TYPE* is also provided, which creates a new chunk just like make-TYPE 
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does, but only if such a chunk does not yet exist in declarative memory (of the current model). All 

slot values of the chunks are used in the comparison (unspecified ones at their default values), 

except the :name attribute. If a matching chunk is found in DM, it is returned. 

(define-slots &rest slot-names)   function 

Define slots to be used in chunks of this process. Only slot names defined using this macro may 

be used in chunks. Overrides any slot set defined earlier. 

(defproc name args &rest body)   function 

Define an ACT-UP procedure. The syntax follows the Lisp defun macro, except that some 

keyword-argument parameters may follow ARGS at the beginning of BODY. This macro will 

define a Lisp function of name NAME with arguments ARGS. The Lisp function will execute the 

Lisp forms in BODY and return the value of the last form. The known parameters are: 

 :GROUP the-group 
A :group parameter defines one or or a list of procedure groups that the procedure will belong to. 

All procedures defined as part of a group must have the same argument footprint. If GROUP is 

given, a function of name GROUP will also be defined that invokes one of the procedures 

assigned to GROUP. For example: 

 
 (defproc subtract-digit-by-addition (minuend subtrahend)    :group 

subtract    "Perform subtraction of a single digit via addition."    

(let ((chunk (retrieve-chunk #96;(:chunk-type addition-

fact                                   :result ,minuend                

                   :add1 ,subtrahend))))        (if chunk (addition-

fact-add2 chunk))))  (defproc subtract-digit-by-decrement (minuend 

subtrahend)    :group subtract    "Perform subtraction of a single 

digit via subtraction knowledge."    ...) 

 
These procedures can be invoked via a function call such as 

 (subtract 5 2) 
ACT-UP will choose the procedure that has the highest utility. See assign-reward for 

manipulation of utilities (reinforcement learning), and *procedure-compilation* for in-theory 

compilation of procedures (routinization, internalization). 

 :INITIAL-UTILITY u 
The :initial-utility parameter sets the utility that this procedure receives when it is created or the 

model is reset. If not given, the initial utility will be the value of *iu* at time of first invocation. 

Procedure utilities, wether initial or acquired through rewards are always specific to the model. 

Procedures and groupings of procedures are not specific to the model. 

(defrule args)   function 

Alias for defproc. This is provided for compatibility with some early published examples of 

ACT-UP code. Please use defproc instead. 

(explain-activation chunk-or-name &optional cues retr-spec)   function 
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Returns a string with an explanation of the evaluation of CHUNK. CUES contains retrieval cues 

spreading activation. RETR-SPEC describes the retrieval specification for partial matching 

retrievals. 

(filter-chunks chunk-set spec &key recently-retrieved)   function 

Filter chunks according to SPEC. SPEC is a list of the form (:slot1 value1 :slot2 value2 ...), or 

(slot1 value1 slot2 value2). CHUNK-SET is the list of chunks to be filtered (1), or an associative 

array (2) of the form ((X . chunk1) (Y . chunk2) ...). returns a list of chunks in case (1) and a list 

of conses in case (2). 

(flush-procedure-queue)   function 

Empties the queue of procedures in the current model. This resets the list of procedures to which 

rewards can be distributed (see assign-reward and assign-reward*). 

(learn-chunk chunk &key co-presentations)   function 

Learn chunk CHUNK. This will note a presentation of a chunk in the model's DM. If the chunk 

does not already exist in DM, it is added. To create or obtain the chunk from a attribute-value 

specification, use make-chunk andmake-chunk* (or their corresponding constructor functions for 

a specific chunk type - see define-chunk-type), then apply learn-chunk on the result. Returns the 

added chunk. 

(make-chunk &rest args)   function 

Create an ACT-UP chunk. Arguments should consist of named chunk feature values: ARGS is a 

list of the form (:name1 val1 :name2 val2 ...), whereas names correspond to slot names as defined 

with define-slots. An attribute called :name should be included to specify the unique name of the 

chunk (the name may not be used for any other chunk in the model). If chunk types are defined 

with define-chunk-type, then use the make-TYPE syntax instead. 

(make-chunk* &rest args)   function 

Like make-chunk, but returns matching chunk from declarative memory if one exists. Arguments 

should consist of named chunk feature values: ARGS is a list of the form (:name1 val1 :name2 

val2 ...), whereas names correspond to slot names as defined with define-slots. An attribute 

called :name should be included to specify the name of the chunk. Comparing the proposed 

chunks (in ARGS) to the existing chunks in Declarative Memory, the names of the chunks are 

ignored. The purpose of this function lies in the ability to boost a chunk existing in DM, when its 

contents are already known. For example: 

 
 (reset-model)  (learn-chunk (make-chunk* :one 1 :two 2))  (learn-chunk 

(make-chunk* :one 1 :two 2)) 

 
will create a chunk (first call), and then boost it, while 

 
 (learn-chunk (make-chunk :one 1 :two 2)) 
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will always create new chunk and add it to declarative memory. If chunk types are defined 

with define-chunk-type, then use the make-TYPE* syntax instead. 

(make-meta-process &key actup-time name)   function 

Create a new ACT-UP meta-process. NAME, if given, specifies a name. The meta process keeps 

track of simulation time. See also meta-process and *current-actup-meta-process*. 

(make-model &key name parms pm dm modules time)   function 

Create a new ACT-UP model. NAME, if given, specifies a name. 

meta-process   structure 

An ACT-UP meta process. A meta process keeps track of time for one or more models. 

(meta-process-name x)   function 

Return the name of an ACT-UP meta-process. See also meta-process and *current-actup-meta-

process*. 

(model-chunks &optional model)   function 

Evaluates to the list of chunks in the given model MODEL. 

(model-name x)   function 

Return the name of an ACT-UP model. 

(pass-time seconds &optional meta-process)   function 

Simulates the passing of time. An optional parameter META-PROCESS specifies the meta-

process to use. It defaults to the current meta-process. 

(pc obj &key stream internals)   function 

Print a human-readable representation of chunk OBJ. STREAM, if given, indicates the stream to 

which output is sent. INTERNALS, if given and t, causes pc to print architectural internals (see 

also pc* for a shortcut). 

(pc* obj &key stream)   function 

Print a human-readable representation of chunk OBJ, including architectural internals. STREAM, 

if given, indicates the stream to which output is sent. 

(reset-actup)   function 
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Resets architectural ACT-UP parameters, meta-process and current model. 

(reset-model)   function 

Resets the current ACT-UP model. All declarative memory and all subsymbolic knowledge is 

deleted. Global parameters (dynamic, global Lisp variables) are retained, as are functions and 

model-independent procedures. 

(reset-mp)   function 

Resets the current Meta process. Resets the time in the meta process. 

(reset-sji-fct chunk)   function 

Removes all references to CHUNK from all other chunks in the current model. 

(retrieve-chunk spec &key cues soft-spec timeout recently-retrieved)   function 

Retrieve a chunk from declarative memory. The retrieved chunk is the most highly active chunk 

among those in declarative memory that are retrievable and that conform to specification SPEC. 

CUES is, if given, a list of chunks that spread activation to facilitate the retrieval of a target 

chunk. CUES may contain chunk objects or names of chunks. SOFT-SPEC is, if given, a retrieval 

specification whose constraints are soft; partial matching is used for this portion of the retrieval 

specification. SPEC and SOFT-SPEC are lists of the form (:slot1 value1 :slot2 value2 ...), or 

(slot1 value1 slot2 value2). TIMEOUT, if given, specifies the maximum time allowed before the 

retrieval fails. RECENTLY-RETRIEVED, if given, may be either t, in which case the retrieved 

chunk must have a declarative finst (i.e., has been recently retrieved), or nil, in which is must not 

have a finst. See also *declarative-num-finsts* and*declarative-finst-span*. 

(set-base-level-fct chunk value &optional creation-time)   function 

Set base levels of CHUNK. If CREATION-TIME is specified, it contains the time at which the 

chunk was created in declarative memory, and VALUE contains the number of presentations (an 

integer value). If TIME is not specified, VALUE is the chunk's absolute activation value (log 

space). For plausibility reasons, models should specify presentations and time when possible. 

(set-base-levels-fct list)   function 

Set base levels of several chunks. ACT-R compatibility function. LIST contains elements of form 

(CHUNK PRES TIME) or (CHUNK ACT), whereas CHUNK is a chunk object or the name of a 

chunk, PRES is a number of past presentations (integer), and TIME the life time of the chunk, 

and ACT the chunk's absolute activation. For plausibility reasons, models should not use the ACT 

form when possible. 

(set-current-model new-model)   function 

Switches the currently active ACT-UP model. See also current-model and with-current-model. 
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(set-dm-total-presentations npres)   function 

Set the count of total presentations of all chunks in DM. This value is relevant for associative 

learning (Sji/Rji). 

(set-similarities-fct list)   function 

Set similarities between chunks. LIST is a list with elements of form (A B S), where A und B are 

chunks or chunk names, and S is the new similarity of A and B. For example: 

 
 (set-similarities-fct '((dave david -0.05)                           

(steve hank -0.1)                            (mary john -0.9))) 

(set-similarity chunk-1 chunk-2 similarity)   function 

Set similarity between chunks. CHUNK-1 and CHUNK-2 are chunks or chunk names. 

SIMILARITY is the new similarity of CHUNK-1 and CHUNK-2. See also set-similarities-fct for 

an ACT-R compatibility function. 

(set-sji chunk-j chunk-i s)   function 

Set Sji link weight between two chunks. CHUNK-J und CHUNK-I are chunks or chunk names, 

and S is the new link weight, regulating spreading activation when CHUNK-J is in context as a 

cue and CHUNK-I is retrieved. S may also be a list of form (FCN TIME), with FCN indicating 

frequency of CHUNK-J and CHUNK-I occurring together, and TIME indicating the point in time 

of their last joint occurrence (TIME is unused currently, but must be given.) 

(show-chunks &optional constraints)   function 

Prints all chunks in model MODEL subject to CONSTRAINTS. See the function filter-chunks for 

a description of possible constraints. 

(show-parameters &optional show-all)   function 

Print architectural ACT-UP parameters different from their defaults. If SHOW-ALL is non-nil, 

print even unchanged parameters. 

(show-utilities)   function 

Prints a list of all utilities in the current model. 

(stop-actup-time &body body)   function 

Returns execution time of BODY in current ACT-UP model. Evaluates BODY. See also actup-

time. 

(wait-for-model &optional model)   function 
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Waits until meta-process and MODEL are synchronized. When a model is run with a new meta-

process, it can happen that the meta-process time is behind the model's time (since the model was 

operated with a different meta-process before). This will generate warnings or errors. This 

function waits (see pass-time) until the model is ready, that is, it sets the meta process time to the 

model time if the model time is more advanced, plus the current value of*dat*. MODEL defaults 

to the current model. 

(with-current-model model &body body)   function 

Execute forms in BODY with the ACT-UP model MODEL being current. See also current-

model and set-current-model. 

 




